Interior Hessian estimates for a class of Hessian type equations
In this paper, we introduce some Hessian operators σ k ( η ) and σ k ( η ) σ l ( η ) by a self-adjoint mapping and the corresponding convex cone Γ k ~ , and derive interior a priori Hessian estimates for the equation σ k ( η ) σ l ( η ) = f ( x ) in Γ k ~ with 0 ≤ l < k < n . As an application...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 52 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce some Hessian operators
σ
k
(
η
)
and
σ
k
(
η
)
σ
l
(
η
)
by a self-adjoint mapping and the corresponding convex cone
Γ
k
~
, and derive interior a priori Hessian estimates for the equation
σ
k
(
η
)
σ
l
(
η
)
=
f
(
x
)
in
Γ
k
~
with
0
≤
l
<
k
<
n
. As an application we prove Pogorelov type estimates which imply Liouville theorem for such equation. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02385-3 |