A-caloric approximation and partial regularity for parabolic systems with Orlicz growth

We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023, Vol.62 (2)
Hauptverfasser: Foss, Mikil, Isernia, Teresa, Leone, Chiara, Verde, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Foss, Mikil
Isernia, Teresa
Leone, Chiara
Verde, Anna
description We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ is that t φ ′ ′ ( t ) and φ ′ ( t ) are uniformly comparable on ( 0 , ∞ ) .
doi_str_mv 10.1007/s00526-022-02324-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2757970565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757970565</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-f4fce08a8cf341cf681cd9951fd9fe843401902db23ae2ce757cf3e66b38329c3</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMoWKsv4CrgejT3mSxL8QaFbhSXIZNJ2pTpZExSan16Uyu4CIf8fOfCB8AtRvcYofohIcSJqBAh5VHCKnIGJpjR8m0oPwcTJFkJhZCX4CqlDUKYN4RNwMesMroP0RuoxzGGL7_V2YcB6qGDo47Z6x5Gu9r1Ovp8gC7EY6zb0JeWdEjZbhPc-7yGy1iib7iKYZ_X1-DC6T7Zm786Be9Pj2_zl2qxfH6dzxbViHmdK8ecsajRjXGUYeNEg00nJceuk842jDKEJSJdS6i2xNia14W0QrS0oUQaOgV3p7nl9s-dTVltwi4OZaUiBZY14oIXip6oNEY_rGz8pzBSR4PqZFAVg-rXoCL0B1HfZUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757970565</pqid></control><display><type>article</type><title>A-caloric approximation and partial regularity for parabolic systems with Orlicz growth</title><source>Springer Nature - Complete Springer Journals</source><creator>Foss, Mikil ; Isernia, Teresa ; Leone, Chiara ; Verde, Anna</creator><creatorcontrib>Foss, Mikil ; Isernia, Teresa ; Leone, Chiara ; Verde, Anna</creatorcontrib><description>We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ is that t φ ′ ′ ( t ) and φ ′ ( t ) are uniformly comparable on ( 0 , ∞ ) .</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-022-02324-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023, Vol.62 (2)</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-f4fce08a8cf341cf681cd9951fd9fe843401902db23ae2ce757cf3e66b38329c3</cites><orcidid>0000-0001-8603-3986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-022-02324-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-022-02324-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Foss, Mikil</creatorcontrib><creatorcontrib>Isernia, Teresa</creatorcontrib><creatorcontrib>Leone, Chiara</creatorcontrib><creatorcontrib>Verde, Anna</creatorcontrib><title>A-caloric approximation and partial regularity for parabolic systems with Orlicz growth</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ is that t φ ′ ′ ( t ) and φ ′ ( t ) are uniformly comparable on ( 0 , ∞ ) .</description><subject>Analysis</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNpFkMtKAzEUhoMoWKsv4CrgejT3mSxL8QaFbhSXIZNJ2pTpZExSan16Uyu4CIf8fOfCB8AtRvcYofohIcSJqBAh5VHCKnIGJpjR8m0oPwcTJFkJhZCX4CqlDUKYN4RNwMesMroP0RuoxzGGL7_V2YcB6qGDo47Z6x5Gu9r1Ovp8gC7EY6zb0JeWdEjZbhPc-7yGy1iib7iKYZ_X1-DC6T7Zm786Be9Pj2_zl2qxfH6dzxbViHmdK8ecsajRjXGUYeNEg00nJceuk842jDKEJSJdS6i2xNia14W0QrS0oUQaOgV3p7nl9s-dTVltwi4OZaUiBZY14oIXip6oNEY_rGz8pzBSR4PqZFAVg-rXoCL0B1HfZUY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Foss, Mikil</creator><creator>Isernia, Teresa</creator><creator>Leone, Chiara</creator><creator>Verde, Anna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8603-3986</orcidid></search><sort><creationdate>2023</creationdate><title>A-caloric approximation and partial regularity for parabolic systems with Orlicz growth</title><author>Foss, Mikil ; Isernia, Teresa ; Leone, Chiara ; Verde, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-f4fce08a8cf341cf681cd9951fd9fe843401902db23ae2ce757cf3e66b38329c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foss, Mikil</creatorcontrib><creatorcontrib>Isernia, Teresa</creatorcontrib><creatorcontrib>Leone, Chiara</creatorcontrib><creatorcontrib>Verde, Anna</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foss, Mikil</au><au>Isernia, Teresa</au><au>Leone, Chiara</au><au>Verde, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A-caloric approximation and partial regularity for parabolic systems with Orlicz growth</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023</date><risdate>2023</risdate><volume>62</volume><issue>2</issue><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ is that t φ ′ ′ ( t ) and φ ′ ( t ) are uniformly comparable on ( 0 , ∞ ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-022-02324-2</doi><orcidid>https://orcid.org/0000-0001-8603-3986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023, Vol.62 (2)
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2757970565
source Springer Nature - Complete Springer Journals
subjects Analysis
Approximation
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Regularity
Systems Theory
Theoretical
title A-caloric approximation and partial regularity for parabolic systems with Orlicz growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A-caloric%20approximation%20and%20partial%20regularity%20for%20parabolic%20systems%20with%20Orlicz%20growth&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Foss,%20Mikil&rft.date=2023&rft.volume=62&rft.issue=2&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-022-02324-2&rft_dat=%3Cproquest_sprin%3E2757970565%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757970565&rft_id=info:pmid/&rfr_iscdi=true