A-caloric approximation and partial regularity for parabolic systems with Orlicz growth
We prove a new A -caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type u t - div a ( D u ) = 0 . Here the growth of a is bounded by the derivative of an N -function φ . The primary assumption for φ...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023, Vol.62 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a new
A
-caloric approximation lemma compatible with an Orlicz setting. With this result, we establish a partial regularity result for parabolic systems of the type
u
t
-
div
a
(
D
u
)
=
0
.
Here the growth of
a
is bounded by the derivative of an
N
-function
φ
. The primary assumption for
φ
is that
t
φ
′
′
(
t
)
and
φ
′
(
t
)
are uniformly comparable on
(
0
,
∞
)
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02324-2 |