The structure of elements in finite full transformation semigroups
The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2005-02, Vol.71 (1), p.69-74 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation α = σβ such that Shift(σ) ∩ Shift(β) = ∅ is obtained, where σ is a permutation of order r and β is an m-potent. Some applications of this factorisation are given. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972700038028 |