The structure of elements in finite full transformation semigroups

The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2005-02, Vol.71 (1), p.69-74
Hauptverfasser: Ayik, Gonca, Ayik, Hayrullah, Ünlü, Yusuf, Howie, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation α = σβ such that Shift(σ) ∩ Shift(β) = ∅ is obtained, where σ is a permutation of order r and β is an m-potent. Some applications of this factorisation are given.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972700038028