Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation

The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtaine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-12, Vol.11 (24), p.4187
Hauptverfasser: Popov, Alexander M., Kostrygin, Daniil G., Shevchik, Anatoly A., Andrievsky, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 4187
container_title Electronics (Basel)
container_volume 11
creator Popov, Alexander M.
Kostrygin, Daniil G.
Shevchik, Anatoly A.
Andrievsky, Boris
description The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.
doi_str_mv 10.3390/electronics11244187
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2756680732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745598845</galeid><sourcerecordid>A745598845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9cbd2e5c44554f09fb27bd622f81613c445dc46c38448128b3f8aba36bb8e9333</originalsourceid><addsrcrecordid>eNptUE1LAzEQDaJgqf0FXhY8b9187G5yXIqtQlFB63XJZieSspusSSr035tSDx6cOczweO_N8BC6xcWSUlHcwwAqemeNChgTxjCvL9CMFLXIBRHk8s9-jRYh7ItUAlNOixl6fpsA-nzjZW_Axqzp5RTNN2QrZ5PpkGnns1fp5QjRGyWH4ZjtrAIfpbHZrvkIWZpr50cZjbM36ErLIcDid87Rbv3wvnrMty-bp1WzzRWtcMyF6noCpWKsLJkuhO5I3fUVIZrjCtMT3itWKcoZ45jwjmouO0mrruMgKKVzdHf2nbz7OkCI7d4dvE0nW1KXVcWLmpLEWp5Zn3KA1ljtopcqdQ-jUc6CNglv6vSF4JyVSUDPAuVdCB50O3kzSn9scdGewm7_CZv-APM5dK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756680732</pqid></control><display><type>article</type><title>Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Popov, Alexander M. ; Kostrygin, Daniil G. ; Shevchik, Anatoly A. ; Andrievsky, Boris</creator><creatorcontrib>Popov, Alexander M. ; Kostrygin, Daniil G. ; Shevchik, Anatoly A. ; Andrievsky, Boris</creatorcontrib><description>The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11244187</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Adaptive control ; Algorithms ; Closed loops ; Communication channels ; Control algorithms ; Control systems ; Control theory ; Controllers ; Decentralized control ; Drone aircraft ; Efficiency ; Feedback control ; Feedback linearization ; Optimization ; Satellites ; Simulation ; Unmanned aerial vehicles</subject><ispartof>Electronics (Basel), 2022-12, Vol.11 (24), p.4187</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9cbd2e5c44554f09fb27bd622f81613c445dc46c38448128b3f8aba36bb8e9333</citedby><cites>FETCH-LOGICAL-c361t-9cbd2e5c44554f09fb27bd622f81613c445dc46c38448128b3f8aba36bb8e9333</cites><orcidid>0000-0002-6223-0261 ; 0000-0001-6323-2931 ; 0000-0002-5256-5180 ; 0000-0002-0732-9111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Popov, Alexander M.</creatorcontrib><creatorcontrib>Kostrygin, Daniil G.</creatorcontrib><creatorcontrib>Shevchik, Anatoly A.</creatorcontrib><creatorcontrib>Andrievsky, Boris</creatorcontrib><title>Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation</title><title>Electronics (Basel)</title><description>The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.</description><subject>Adaptation</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Closed loops</subject><subject>Communication channels</subject><subject>Control algorithms</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Decentralized control</subject><subject>Drone aircraft</subject><subject>Efficiency</subject><subject>Feedback control</subject><subject>Feedback linearization</subject><subject>Optimization</subject><subject>Satellites</subject><subject>Simulation</subject><subject>Unmanned aerial vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1LAzEQDaJgqf0FXhY8b9187G5yXIqtQlFB63XJZieSspusSSr035tSDx6cOczweO_N8BC6xcWSUlHcwwAqemeNChgTxjCvL9CMFLXIBRHk8s9-jRYh7ItUAlNOixl6fpsA-nzjZW_Axqzp5RTNN2QrZ5PpkGnns1fp5QjRGyWH4ZjtrAIfpbHZrvkIWZpr50cZjbM36ErLIcDid87Rbv3wvnrMty-bp1WzzRWtcMyF6noCpWKsLJkuhO5I3fUVIZrjCtMT3itWKcoZ45jwjmouO0mrruMgKKVzdHf2nbz7OkCI7d4dvE0nW1KXVcWLmpLEWp5Zn3KA1ljtopcqdQ-jUc6CNglv6vSF4JyVSUDPAuVdCB50O3kzSn9scdGewm7_CZv-APM5dK8</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Popov, Alexander M.</creator><creator>Kostrygin, Daniil G.</creator><creator>Shevchik, Anatoly A.</creator><creator>Andrievsky, Boris</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6223-0261</orcidid><orcidid>https://orcid.org/0000-0001-6323-2931</orcidid><orcidid>https://orcid.org/0000-0002-5256-5180</orcidid><orcidid>https://orcid.org/0000-0002-0732-9111</orcidid></search><sort><creationdate>20221201</creationdate><title>Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation</title><author>Popov, Alexander M. ; Kostrygin, Daniil G. ; Shevchik, Anatoly A. ; Andrievsky, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9cbd2e5c44554f09fb27bd622f81613c445dc46c38448128b3f8aba36bb8e9333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Closed loops</topic><topic>Communication channels</topic><topic>Control algorithms</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Decentralized control</topic><topic>Drone aircraft</topic><topic>Efficiency</topic><topic>Feedback control</topic><topic>Feedback linearization</topic><topic>Optimization</topic><topic>Satellites</topic><topic>Simulation</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popov, Alexander M.</creatorcontrib><creatorcontrib>Kostrygin, Daniil G.</creatorcontrib><creatorcontrib>Shevchik, Anatoly A.</creatorcontrib><creatorcontrib>Andrievsky, Boris</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popov, Alexander M.</au><au>Kostrygin, Daniil G.</au><au>Shevchik, Anatoly A.</au><au>Andrievsky, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>11</volume><issue>24</issue><spage>4187</spage><pages>4187-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11244187</doi><orcidid>https://orcid.org/0000-0002-6223-0261</orcidid><orcidid>https://orcid.org/0000-0001-6323-2931</orcidid><orcidid>https://orcid.org/0000-0002-5256-5180</orcidid><orcidid>https://orcid.org/0000-0002-0732-9111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-12, Vol.11 (24), p.4187
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2756680732
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
Adaptive control
Algorithms
Closed loops
Communication channels
Control algorithms
Control systems
Control theory
Controllers
Decentralized control
Drone aircraft
Efficiency
Feedback control
Feedback linearization
Optimization
Satellites
Simulation
Unmanned aerial vehicles
title Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed-Gradient%20Adaptive%20Control%20for%20Parametrically%20Uncertain%20UAVs%20in%20Formation&rft.jtitle=Electronics%20(Basel)&rft.au=Popov,%20Alexander%20M.&rft.date=2022-12-01&rft.volume=11&rft.issue=24&rft.spage=4187&rft.pages=4187-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11244187&rft_dat=%3Cgale_proqu%3EA745598845%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756680732&rft_id=info:pmid/&rft_galeid=A745598845&rfr_iscdi=true