Speed-Gradient Adaptive Control for Parametrically Uncertain UAVs in Formation

The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtaine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-12, Vol.11 (24), p.4187
Hauptverfasser: Popov, Alexander M., Kostrygin, Daniil G., Shevchik, Anatoly A., Andrievsky, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is devoted to the problem of the decentralized control of unmanned aerial vehicle (UAV) formation in the case of parametric uncertainty. A new version of the feedback linearization approach is proposed and used for a point mass UAV model transformation. As result, a linear model is obtained containing an unknown value of the UAV mass. Employing the speed-gradient design method and the implicit reference model concept, a combined adaptive control law is proposed for a single UAV, including the UAV’s mass estimation and adaptive tuning of the controller parameters. The obtained new algorithms are then used to address the problem of consensus-based decentralized control of the UAV formation. Rigorous stability conditions for control and identification are derived, and simulation results are presented to demonstrate the quality of the closed-loop control system for various conditions.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11244187