ABELIAN DIFFERENCE SETS AS LATTICE COVERINGS AND LATTICE TILINGS

We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice $ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $ with balls of radius $ 2 $ under the $ \ell _1 $ metric (or, equivalently, a covering of the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2022-10, Vol.106 (2), p.177-184
1. Verfasser: KOVAČEVIĆ, MLADEN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice $ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $ with balls of radius $ 2 $ under the $ \ell _1 $ metric (or, equivalently, a covering of the integer lattice $ \mathbb {Z} ^n $ with balls of radius $ 1 $ under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of $ A_n $ . This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972721001271