ABELIAN DIFFERENCE SETS AS LATTICE COVERINGS AND LATTICE TILINGS
We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice $ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $ with balls of radius $ 2 $ under the $ \ell _1 $ metric (or, equivalently, a covering of the inte...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2022-10, Vol.106 (2), p.177-184 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice
$ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $
with balls of radius
$ 2 $
under the
$ \ell _1 $
metric (or, equivalently, a covering of the integer lattice
$ \mathbb {Z} ^n $
with balls of radius
$ 1 $
under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of
$ A_n $
. This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972721001271 |