THE NUMBER OF SET ORBITS OF PERMUTATION GROUPS AND THE GROUP ORDER
If G is permutation group acting on a finite set $\Omega $ , then this action induces a natural action of G on the power set $\mathscr{P}(\Omega )$ . The number $s(G)$ of orbits in this action is an important parameter that has been used in bounding numbers of conjugacy classes in finite groups. In...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2022-08, Vol.106 (1), p.89-101 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | If G is permutation group acting on a finite set
$\Omega $
, then this action induces a natural action of G on the power set
$\mathscr{P}(\Omega )$
. The number
$s(G)$
of orbits in this action is an important parameter that has been used in bounding numbers of conjugacy classes in finite groups. In this context,
$\inf ({\log _2 s(G)}/{\log _2 |G|})$
plays a role, but the precise value of this constant was unknown. We determine it where G runs over all permutation groups not containing any
${{\textrm {A}}}_l, l> 4$
, as a composition factor. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972721001064 |