THE NUMBER OF SET ORBITS OF PERMUTATION GROUPS AND THE GROUP ORDER

If G is permutation group acting on a finite set $\Omega $ , then this action induces a natural action of G on the power set $\mathscr{P}(\Omega )$ . The number $s(G)$ of orbits in this action is an important parameter that has been used in bounding numbers of conjugacy classes in finite groups. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2022-08, Vol.106 (1), p.89-101
Hauptverfasser: GINTZ, MICHAEL, KELLER, THOMAS M., KORTJE, MATTHEW, WANG, ZILI, YANG, YONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If G is permutation group acting on a finite set $\Omega $ , then this action induces a natural action of G on the power set $\mathscr{P}(\Omega )$ . The number $s(G)$ of orbits in this action is an important parameter that has been used in bounding numbers of conjugacy classes in finite groups. In this context, $\inf ({\log _2 s(G)}/{\log _2 |G|})$ plays a role, but the precise value of this constant was unknown. We determine it where G runs over all permutation groups not containing any ${{\textrm {A}}}_l, l> 4$ , as a composition factor.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972721001064