Novel Air2water Model Variant for Lake Surface Temperature Modeling With Detailed Analysis of Calibration Methods

The air2water model is a simple and efficient tool for modeling surface water temperature in lakes based solely on the air temperature. In this article, we propose to modify the air2water model in such a way that different parameters would be associated with lake stratification of cold waters than w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.553-569
Hauptverfasser: Piotrowski, Adam P., Napiorkowski, Jaroslaw J., Zhu, Senlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The air2water model is a simple and efficient tool for modeling surface water temperature in lakes based solely on the air temperature. In this article, we propose to modify the air2water model in such a way that different parameters would be associated with lake stratification of cold waters than with lake stratification of warm waters. The situation of a mix of both cold water and warm water is also considered. The model is tested on 22 lowland Polish lakes against two classical air2water variants. As the new air2water model variant is slightly more complicated than the basic versions, we focus on the importance of the choice of the calibration method. Each variant of the air2water model is calibrated with eight different optimization methods, which are also compared on various benchmark problems. We show that the proposed variant is superior to the classical air2water models on about 90% of tested lakes, but only if the calibration approach is properly selected, which confirms the importance of the links between the model and appropriate optimization procedures. The proposed air2water variant performs well on various lowland lakes, with exception of large but shallow ones, probably due to the weak stratification of the shallow lakes.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3226516