DimonGen: Diversified Generative Commonsense Reasoning for Explaining Concept Relationships

In this paper, we propose DimonGen, which aims to generate diverse sentences describing concept relationships in various everyday scenarios. To support this, we first create a benchmark dataset for this task by adapting the existing CommonGen dataset. We then propose a two-stage model called MoREE t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Liu, Chenzhengyi, Huang, Jie, Zhu, Kerui, Kevin Chen-Chuan Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose DimonGen, which aims to generate diverse sentences describing concept relationships in various everyday scenarios. To support this, we first create a benchmark dataset for this task by adapting the existing CommonGen dataset. We then propose a two-stage model called MoREE to generate the target sentences. MoREE consists of a mixture of retrievers model that retrieves diverse context sentences related to the given concepts, and a mixture of generators model that generates diverse sentences based on the retrieved contexts. We conduct experiments on the DimonGen task and show that MoREE outperforms strong baselines in terms of both the quality and diversity of the generated sentences. Our results demonstrate that MoREE is able to generate diverse sentences that reflect different relationships between concepts, leading to a comprehensive understanding of concept relationships.
ISSN:2331-8422