HPPD-resistant cotton response and weed management systems using isoxaflutole

The southern United States produces 90% of the nation's cotton, and the Texas High Plains is the largest contiguous cotton producing region. Since 2011, glyphosate-resistant Palmer amaranth has complicated cotton production, and alternatives to glyphosate are needed. Integrating soil residual h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed technology 2022-10, Vol.36 (5), p.671-677
Hauptverfasser: Foster, Delaney C., Dotray, Peter A., Thompson, Corey N., Baldwin, Gregory B., Moore, Frederick T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The southern United States produces 90% of the nation's cotton, and the Texas High Plains is the largest contiguous cotton producing region. Since 2011, glyphosate-resistant Palmer amaranth has complicated cotton production, and alternatives to glyphosate are needed. Integrating soil residual herbicides into a weed management program is a crucial step to control glyphosate resistant weeds before emergence. The recent development of p-hydroxyphenylpyruvate dioxygenase (HPPD)-resistant cotton by BASF Corporation may allow growers to use isoxaflutole in future weed management programs. In 2019 and 2020, field experiments were conducted in New Deal, Lubbock, and Halfway, Texas, to evaluate HPPD-resistant cotton response to isoxaflutole applied preemergence (PRE) or early postemergence (EPOST) and to determine the efficacy of isoxaflutole when used as part of a season-long weed management program. At the New Deal location, cotton response was observed following the EPOST application, but it never exceeded 10%. Cotton response was greatest following the PRE application in Lubbock in 2019 but did not exceed 14%. In 2020 in Lubbock, cotton was replanted due to severe weather. There was
ISSN:0890-037X
1550-2740
DOI:10.1017/wet.2022.68