Measurement of the NO x reduction effect on food wastewater during waste incineration
Incineration is the most effective method for reducing the increasing waste volume. However, as the pollutants generated during incineration may cause secondary pollution, blocking them in advance is necessary. During incineration, prevention facilities are operated to reduce the amount of pollutant...
Gespeichert in:
Veröffentlicht in: | Waste management & research 2023-01, Vol.41 (1), p.195-204 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Incineration is the most effective method for reducing the increasing waste volume. However, as the pollutants generated during incineration may cause secondary pollution, blocking them in advance is necessary. During incineration, prevention facilities are operated to reduce the amount of pollutants. Conventional selective non-catalytic reduction (SNCR) reduces nitrogen oxides (NO
x
) by injecting ammonia and urea as reducing agents. In this study, the NO
x
reduction effect on food wastewater (FW) was examined. In addition, the removal efficiency was compared at different concentrations of urea mixed with FW. When different concentrations of urea were injected in SNCR facilities A, B and C, NO
x
removal efficiencies of up to 75% were observed; with FW injection only, removal efficiency was 56%; and when both urea and FW were injected, removal efficiency was up to 79%. Although FW showed a lower NO
x
removal efficiency than urea, injecting both increased the efficiency. In addition, when air pollutant emissions and the incinerator temperature were analysed, we found that they could be managed without exceeding the allowed limits. However, for the injection and incineration of reducing agents, the characteristics of the incineration facility and reducing agents must be considered. |
---|---|
ISSN: | 0734-242X 1096-3669 |
DOI: | 10.1177/0734242X221105443 |