Compound Poisson approximation for simple transient random walks in random sceneries
Given a simple transient random walk \((S_n)_{n\geq 0}\) in \(\mathbf{Z}\) and a stationary sequence of real random variables \((\xi(s))_{s\in \mathbf{Z}}\), we investigate the extremes of the sequence \((\xi(S_n))_{n\geq 0}\). Under suitable conditions, we make explicit the extremal index and show...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a simple transient random walk \((S_n)_{n\geq 0}\) in \(\mathbf{Z}\) and a stationary sequence of real random variables \((\xi(s))_{s\in \mathbf{Z}}\), we investigate the extremes of the sequence \((\xi(S_n))_{n\geq 0}\). Under suitable conditions, we make explicit the extremal index and show that the point process of exceedances converges to a compound Poisson point process. We give two examples for which the cluster size distribution can be made explicit. |
---|---|
ISSN: | 2331-8422 |