Improved quadratic Gowers uniformity for the Möbius function
We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-T...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Leng, James |
description | We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755992486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755992486</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559924863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9cwtKMovS01RKCxNTClKLMlMVnDPL08tKlYozctMyy_KzSypVADSCiUZqQq-h7clZZYWK6SV5iWXZObn8TCwpiXmFKfyQmluBmU31xBnD12gmYWlqcUl8Vn5pUV5QKl4I3NTU0tLIxMLM2PiVAEADZk5TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755992486</pqid></control><display><type>article</type><title>Improved quadratic Gowers uniformity for the Möbius function</title><source>Free E- Journals</source><creator>Leng, James</creator><creatorcontrib>Leng, James</creatorcontrib><description>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fourier analysis ; Number theory ; Polynomials ; Toruses</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Leng, James</creatorcontrib><title>Improved quadratic Gowers uniformity for the Möbius function</title><title>arXiv.org</title><description>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</description><subject>Fourier analysis</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9cwtKMovS01RKCxNTClKLMlMVnDPL08tKlYozctMyy_KzSypVADSCiUZqQq-h7clZZYWK6SV5iWXZObn8TCwpiXmFKfyQmluBmU31xBnD12gmYWlqcUl8Vn5pUV5QKl4I3NTU0tLIxMLM2PiVAEADZk5TA</recordid><startdate>20230320</startdate><enddate>20230320</enddate><creator>Leng, James</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230320</creationdate><title>Improved quadratic Gowers uniformity for the Möbius function</title><author>Leng, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559924863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fourier analysis</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Leng, James</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, James</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved quadratic Gowers uniformity for the Möbius function</atitle><jtitle>arXiv.org</jtitle><date>2023-03-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2755992486 |
source | Free E- Journals |
subjects | Fourier analysis Number theory Polynomials Toruses |
title | Improved quadratic Gowers uniformity for the Möbius function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20quadratic%20Gowers%20uniformity%20for%20the%20M%C3%B6bius%20function&rft.jtitle=arXiv.org&rft.au=Leng,%20James&rft.date=2023-03-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755992486%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755992486&rft_id=info:pmid/&rfr_iscdi=true |