Improved quadratic Gowers uniformity for the Möbius function

We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
1. Verfasser: Leng, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leng, James
description We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755992486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755992486</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559924863</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9cwtKMovS01RKCxNTClKLMlMVnDPL08tKlYozctMyy_KzSypVADSCiUZqQq-h7clZZYWK6SV5iWXZObn8TCwpiXmFKfyQmluBmU31xBnD12gmYWlqcUl8Vn5pUV5QKl4I3NTU0tLIxMLM2PiVAEADZk5TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755992486</pqid></control><display><type>article</type><title>Improved quadratic Gowers uniformity for the Möbius function</title><source>Free E- Journals</source><creator>Leng, James</creator><creatorcontrib>Leng, James</creatorcontrib><description>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A &gt; 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fourier analysis ; Number theory ; Polynomials ; Toruses</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Leng, James</creatorcontrib><title>Improved quadratic Gowers uniformity for the Möbius function</title><title>arXiv.org</title><description>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A &gt; 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</description><subject>Fourier analysis</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw9cwtKMovS01RKCxNTClKLMlMVnDPL08tKlYozctMyy_KzSypVADSCiUZqQq-h7clZZYWK6SV5iWXZObn8TCwpiXmFKfyQmluBmU31xBnD12gmYWlqcUl8Vn5pUV5QKl4I3NTU0tLIxMLM2PiVAEADZk5TA</recordid><startdate>20230320</startdate><enddate>20230320</enddate><creator>Leng, James</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230320</creationdate><title>Improved quadratic Gowers uniformity for the Möbius function</title><author>Leng, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559924863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fourier analysis</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Leng, James</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, James</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved quadratic Gowers uniformity for the Möbius function</atitle><jtitle>arXiv.org</jtitle><date>2023-03-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A &gt; 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2755992486
source Free E- Journals
subjects Fourier analysis
Number theory
Polynomials
Toruses
title Improved quadratic Gowers uniformity for the Möbius function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20quadratic%20Gowers%20uniformity%20for%20the%20M%C3%B6bius%20function&rft.jtitle=arXiv.org&rft.au=Leng,%20James&rft.date=2023-03-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755992486%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755992486&rft_id=info:pmid/&rfr_iscdi=true