Improved quadratic Gowers uniformity for the Möbius function

We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
1. Verfasser: Leng, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that $$\|\mu\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ $$\|\Lambda - \Lambda_Q\|_{U^3([N])} \ll_{A}^{\text{ineff}} \log^{-A}(N)$$ for any \(A > 0\) where \(\Lambda_Q\) is an approximant to the von Mangoldt function and will be defined below, improving upon a bound of Tao-Ter\"av\"ainen (2021). As a consequence, among other things, we have the following: $$\mathbb{E}_{x, y \in [N], x + 3y \in [N]} \Lambda(x)\Lambda(x + y)\Lambda(x + 2y)\Lambda(x + 3y) = \mathfrak{S} + O_A(\log^{-A}(N))$$ where \(\mathfrak{S}\) is the singular series for the configuration \((x, x + y, x + 2y, x + 3y)\). In fact, we show that $$\|\mu - \mu_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ $$\|\Lambda - \Lambda_{Siegel}\|_{U^3([N])} \ll \exp(-O(\log^{1/C}(N)))$$ where \(\mu_{Siegel}\) and \(\Lambda_{Siegel}\) are approximants of \(\mu\), and \(\Lambda\), respectively, representing the Siegel zero contribution of \(\mu\) and are defined in the above article. To do so, we use an improvement of the \(U^3\) inverse theorem due to Sanders and we follow the approach of Green and Tao (2007), opting to use the ``old-fashioned" approach to equidistribution on two-step nilmanifolds which was also considered by Green and Tao (2017), and by Gowers and Wolf (2010). To the author's knowledge, this is the first time that quadratic Fourier analysis over \(\mathbb{Z}/N\mathbb{Z}\) has achieved quasi-polynomial type bounds in applications.
ISSN:2331-8422