Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off
A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Zichen Kirschner, Johannes Zhang, Junxi Zanini, Francesco Ayoub, Alex Dehghan, Masood Schuurmans, Dale |
description | A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on RL methods has not been fully characterized in existing theory, but a more detailed analysis of its effect could reveal opportunities for improving data-efficiency. We address this gap by analyzing Monte-Carlo policy evaluation for LQR systems and uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently to time discretization, leading to an optimal choice of temporal resolution for a given data budget. These findings show that managing the temporal resolution can provably improve policy evaluation efficiency in LQR systems with finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and standard RL benchmarks for non-linear continuous control. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755991993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755991993</sourcerecordid><originalsourceid>FETCH-proquest_journals_27559919933</originalsourceid><addsrcrecordid>eNqNi08LgjAcQEcQJOV3-EFnQbeWrVuI0qVLSFcZOGUyf7P9-f4Z9AE6vcN7b0MSyliRXU6U7kjq_ZTnOT2XlHOWkPYhUY4aR2jVvFgnDTyVtyYGbRE0QmUxaIw2enhJExXUPuhZfvUVbtBE7OWsMKxj62SvMjsMB7IdpPEq_XFPjk3dVvdscfYdlQ_dZKPDVXW05FyIQgjG_qs-fQ5Acw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755991993</pqid></control><display><type>article</type><title>Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off</title><source>Free E- Journals</source><creator>Zhang, Zichen ; Kirschner, Johannes ; Zhang, Junxi ; Zanini, Francesco ; Ayoub, Alex ; Dehghan, Masood ; Schuurmans, Dale</creator><creatorcontrib>Zhang, Zichen ; Kirschner, Johannes ; Zhang, Junxi ; Zanini, Francesco ; Ayoub, Alex ; Dehghan, Masood ; Schuurmans, Dale</creatorcontrib><description>A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on RL methods has not been fully characterized in existing theory, but a more detailed analysis of its effect could reveal opportunities for improving data-efficiency. We address this gap by analyzing Monte-Carlo policy evaluation for LQR systems and uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently to time discretization, leading to an optimal choice of temporal resolution for a given data budget. These findings show that managing the temporal resolution can provably improve policy evaluation efficiency in LQR systems with finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and standard RL benchmarks for non-linear continuous control.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Discretization ; Horizon ; Machine learning ; Optimal control ; Temporal resolution ; Tradeoffs</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Kirschner, Johannes</creatorcontrib><creatorcontrib>Zhang, Junxi</creatorcontrib><creatorcontrib>Zanini, Francesco</creatorcontrib><creatorcontrib>Ayoub, Alex</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Schuurmans, Dale</creatorcontrib><title>Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off</title><title>arXiv.org</title><description>A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on RL methods has not been fully characterized in existing theory, but a more detailed analysis of its effect could reveal opportunities for improving data-efficiency. We address this gap by analyzing Monte-Carlo policy evaluation for LQR systems and uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently to time discretization, leading to an optimal choice of temporal resolution for a given data budget. These findings show that managing the temporal resolution can provably improve policy evaluation efficiency in LQR systems with finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and standard RL benchmarks for non-linear continuous control.</description><subject>Algorithms</subject><subject>Discretization</subject><subject>Horizon</subject><subject>Machine learning</subject><subject>Optimal control</subject><subject>Temporal resolution</subject><subject>Tradeoffs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi08LgjAcQEcQJOV3-EFnQbeWrVuI0qVLSFcZOGUyf7P9-f4Z9AE6vcN7b0MSyliRXU6U7kjq_ZTnOT2XlHOWkPYhUY4aR2jVvFgnDTyVtyYGbRE0QmUxaIw2enhJExXUPuhZfvUVbtBE7OWsMKxj62SvMjsMB7IdpPEq_XFPjk3dVvdscfYdlQ_dZKPDVXW05FyIQgjG_qs-fQ5Acw</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Zhang, Zichen</creator><creator>Kirschner, Johannes</creator><creator>Zhang, Junxi</creator><creator>Zanini, Francesco</creator><creator>Ayoub, Alex</creator><creator>Dehghan, Masood</creator><creator>Schuurmans, Dale</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231214</creationdate><title>Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off</title><author>Zhang, Zichen ; Kirschner, Johannes ; Zhang, Junxi ; Zanini, Francesco ; Ayoub, Alex ; Dehghan, Masood ; Schuurmans, Dale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27559919933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Discretization</topic><topic>Horizon</topic><topic>Machine learning</topic><topic>Optimal control</topic><topic>Temporal resolution</topic><topic>Tradeoffs</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Kirschner, Johannes</creatorcontrib><creatorcontrib>Zhang, Junxi</creatorcontrib><creatorcontrib>Zanini, Francesco</creatorcontrib><creatorcontrib>Ayoub, Alex</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Schuurmans, Dale</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zichen</au><au>Kirschner, Johannes</au><au>Zhang, Junxi</au><au>Zanini, Francesco</au><au>Ayoub, Alex</au><au>Dehghan, Masood</au><au>Schuurmans, Dale</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off</atitle><jtitle>arXiv.org</jtitle><date>2023-12-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on RL methods has not been fully characterized in existing theory, but a more detailed analysis of its effect could reveal opportunities for improving data-efficiency. We address this gap by analyzing Monte-Carlo policy evaluation for LQR systems and uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently to time discretization, leading to an optimal choice of temporal resolution for a given data budget. These findings show that managing the temporal resolution can provably improve policy evaluation efficiency in LQR systems with finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and standard RL benchmarks for non-linear continuous control.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2755991993 |
source | Free E- Journals |
subjects | Algorithms Discretization Horizon Machine learning Optimal control Temporal resolution Tradeoffs |
title | Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Managing%20Temporal%20Resolution%20in%20Continuous%20Value%20Estimation:%20A%20Fundamental%20Trade-off&rft.jtitle=arXiv.org&rft.au=Zhang,%20Zichen&rft.date=2023-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755991993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755991993&rft_id=info:pmid/&rfr_iscdi=true |