Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off

A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Zhang, Zichen, Kirschner, Johannes, Zhang, Junxi, Zanini, Francesco, Ayoub, Alex, Dehghan, Masood, Schuurmans, Dale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A default assumption in reinforcement learning (RL) and optimal control is that observations arrive at discrete time points on a fixed clock cycle. Yet, many applications involve continuous-time systems where the time discretization, in principle, can be managed. The impact of time discretization on RL methods has not been fully characterized in existing theory, but a more detailed analysis of its effect could reveal opportunities for improving data-efficiency. We address this gap by analyzing Monte-Carlo policy evaluation for LQR systems and uncover a fundamental trade-off between approximation and statistical error in value estimation. Importantly, these two errors behave differently to time discretization, leading to an optimal choice of temporal resolution for a given data budget. These findings show that managing the temporal resolution can provably improve policy evaluation efficiency in LQR systems with finite data. Empirically, we demonstrate the trade-off in numerical simulations of LQR instances and standard RL benchmarks for non-linear continuous control.
ISSN:2331-8422