In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting
Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoele...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-01, Vol.11 (1), p.149-157 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 149 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Hu, Yingfei Wang, Jun Huang, Huiting Feng, Jianyong Liu, Wangxi Guan, Hangmin Hao, Lingyun Li, Zhaosheng Zou, Zhigang |
description | Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoelectrodes. Herein, using CuBi2O4 as a prototype, an in situ surface-trap passivation strategy is developed, which yields a beneficial 90 mV anodic shift in hydrogen-evolution onset. Detailed mechanism investigations prove that the intentionally added Mg2+ ions in the precursor gradually segregate as MgO and enrich at the grain boundaries/surface of the CuBi2O4 multicrystalline, porous film during annealing, via which surface traps stemming from dangling bonds are spontaneously passivated; measurements of photovoltage generation characteristics and carrier lifetime validate the favorable roles of the MgO passivator in CuBi2O4 photocathodes. A bias-free water-splitting device is assembled using MgO-passivated CuBi2O4 and Mo-doped BiVO4 as the photocathode and photoanode respectively in a tandem configuration, delivering a solar-to-hydrogen conversion efficiency of approximately 0.41%. |
doi_str_mv | 10.1039/d2ta07117g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755892656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755892656</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-dc59df4e17ffa7a9809f6d77ca8989befd6e1293e60c22e4abefdf52ce23bac43</originalsourceid><addsrcrecordid>eNo9jUtLAzEYRYMoWGo3_oKA69EkM5PHUgcfhUI3uhPKN3m0KcMk5qF_34ri3dzDXZyL0DUlt5S06s6wAkRQKvZnaMFITxrRKX7-z1JeolXOR3KKJIQrtUDv6xlnXyrONTnQtikJIo6Qs_-E4sOMg8NDffBs2-F4CCVoKIdgbMYuJFzn0UO2BucwQcJfUGzCOU6-FD_vr9CFgynb1V8v0dvT4-vw0my2z-vhftNEKtvSGN0r4zpLhXMgQEmiHDdCaJBKqtE6wy1lqrWcaMZsBz-T65m2rB1Bd-0S3fx6Ywof1eayO4aa5tPljom-l4rxnrffuOtXdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755892656</pqid></control><display><type>article</type><title>In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hu, Yingfei ; Wang, Jun ; Huang, Huiting ; Feng, Jianyong ; Liu, Wangxi ; Guan, Hangmin ; Hao, Lingyun ; Li, Zhaosheng ; Zou, Zhigang</creator><creatorcontrib>Hu, Yingfei ; Wang, Jun ; Huang, Huiting ; Feng, Jianyong ; Liu, Wangxi ; Guan, Hangmin ; Hao, Lingyun ; Li, Zhaosheng ; Zou, Zhigang</creatorcontrib><description>Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoelectrodes. Herein, using CuBi2O4 as a prototype, an in situ surface-trap passivation strategy is developed, which yields a beneficial 90 mV anodic shift in hydrogen-evolution onset. Detailed mechanism investigations prove that the intentionally added Mg2+ ions in the precursor gradually segregate as MgO and enrich at the grain boundaries/surface of the CuBi2O4 multicrystalline, porous film during annealing, via which surface traps stemming from dangling bonds are spontaneously passivated; measurements of photovoltage generation characteristics and carrier lifetime validate the favorable roles of the MgO passivator in CuBi2O4 photocathodes. A bias-free water-splitting device is assembled using MgO-passivated CuBi2O4 and Mo-doped BiVO4 as the photocathode and photoanode respectively in a tandem configuration, delivering a solar-to-hydrogen conversion efficiency of approximately 0.41%.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07117g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capital costs ; Carrier lifetime ; Fabrication ; Grain boundaries ; Hydrogen evolution ; Magnesium ; Magnesium oxide ; Passivity ; Photocathodes ; Splitting ; Tandem configuration ; Traps ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (1), p.149-157</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Hu, Yingfei</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Huang, Huiting</creatorcontrib><creatorcontrib>Feng, Jianyong</creatorcontrib><creatorcontrib>Liu, Wangxi</creatorcontrib><creatorcontrib>Guan, Hangmin</creatorcontrib><creatorcontrib>Hao, Lingyun</creatorcontrib><creatorcontrib>Li, Zhaosheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><title>In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoelectrodes. Herein, using CuBi2O4 as a prototype, an in situ surface-trap passivation strategy is developed, which yields a beneficial 90 mV anodic shift in hydrogen-evolution onset. Detailed mechanism investigations prove that the intentionally added Mg2+ ions in the precursor gradually segregate as MgO and enrich at the grain boundaries/surface of the CuBi2O4 multicrystalline, porous film during annealing, via which surface traps stemming from dangling bonds are spontaneously passivated; measurements of photovoltage generation characteristics and carrier lifetime validate the favorable roles of the MgO passivator in CuBi2O4 photocathodes. A bias-free water-splitting device is assembled using MgO-passivated CuBi2O4 and Mo-doped BiVO4 as the photocathode and photoanode respectively in a tandem configuration, delivering a solar-to-hydrogen conversion efficiency of approximately 0.41%.</description><subject>Capital costs</subject><subject>Carrier lifetime</subject><subject>Fabrication</subject><subject>Grain boundaries</subject><subject>Hydrogen evolution</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Passivity</subject><subject>Photocathodes</subject><subject>Splitting</subject><subject>Tandem configuration</subject><subject>Traps</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLAzEYRYMoWGo3_oKA69EkM5PHUgcfhUI3uhPKN3m0KcMk5qF_34ri3dzDXZyL0DUlt5S06s6wAkRQKvZnaMFITxrRKX7-z1JeolXOR3KKJIQrtUDv6xlnXyrONTnQtikJIo6Qs_-E4sOMg8NDffBs2-F4CCVoKIdgbMYuJFzn0UO2BucwQcJfUGzCOU6-FD_vr9CFgynb1V8v0dvT4-vw0my2z-vhftNEKtvSGN0r4zpLhXMgQEmiHDdCaJBKqtE6wy1lqrWcaMZsBz-T65m2rB1Bd-0S3fx6Ywof1eayO4aa5tPljom-l4rxnrffuOtXdA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hu, Yingfei</creator><creator>Wang, Jun</creator><creator>Huang, Huiting</creator><creator>Feng, Jianyong</creator><creator>Liu, Wangxi</creator><creator>Guan, Hangmin</creator><creator>Hao, Lingyun</creator><creator>Li, Zhaosheng</creator><creator>Zou, Zhigang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230101</creationdate><title>In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting</title><author>Hu, Yingfei ; Wang, Jun ; Huang, Huiting ; Feng, Jianyong ; Liu, Wangxi ; Guan, Hangmin ; Hao, Lingyun ; Li, Zhaosheng ; Zou, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-dc59df4e17ffa7a9809f6d77ca8989befd6e1293e60c22e4abefdf52ce23bac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capital costs</topic><topic>Carrier lifetime</topic><topic>Fabrication</topic><topic>Grain boundaries</topic><topic>Hydrogen evolution</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Passivity</topic><topic>Photocathodes</topic><topic>Splitting</topic><topic>Tandem configuration</topic><topic>Traps</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yingfei</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Huang, Huiting</creatorcontrib><creatorcontrib>Feng, Jianyong</creatorcontrib><creatorcontrib>Liu, Wangxi</creatorcontrib><creatorcontrib>Guan, Hangmin</creatorcontrib><creatorcontrib>Hao, Lingyun</creatorcontrib><creatorcontrib>Li, Zhaosheng</creatorcontrib><creatorcontrib>Zou, Zhigang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yingfei</au><au>Wang, Jun</au><au>Huang, Huiting</au><au>Feng, Jianyong</au><au>Liu, Wangxi</au><au>Guan, Hangmin</au><au>Hao, Lingyun</au><au>Li, Zhaosheng</au><au>Zou, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><issue>1</issue><spage>149</spage><epage>157</epage><pages>149-157</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoelectrodes. Herein, using CuBi2O4 as a prototype, an in situ surface-trap passivation strategy is developed, which yields a beneficial 90 mV anodic shift in hydrogen-evolution onset. Detailed mechanism investigations prove that the intentionally added Mg2+ ions in the precursor gradually segregate as MgO and enrich at the grain boundaries/surface of the CuBi2O4 multicrystalline, porous film during annealing, via which surface traps stemming from dangling bonds are spontaneously passivated; measurements of photovoltage generation characteristics and carrier lifetime validate the favorable roles of the MgO passivator in CuBi2O4 photocathodes. A bias-free water-splitting device is assembled using MgO-passivated CuBi2O4 and Mo-doped BiVO4 as the photocathode and photoanode respectively in a tandem configuration, delivering a solar-to-hydrogen conversion efficiency of approximately 0.41%.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta07117g</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-01, Vol.11 (1), p.149-157 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2755892656 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Capital costs Carrier lifetime Fabrication Grain boundaries Hydrogen evolution Magnesium Magnesium oxide Passivity Photocathodes Splitting Tandem configuration Traps Water splitting |
title | In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20surface-trap%20passivation%20of%20CuBi2O4%20photocathodes%20for%20unbiased%20solar%20water%20splitting&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hu,%20Yingfei&rft.date=2023-01-01&rft.volume=11&rft.issue=1&rft.spage=149&rft.epage=157&rft.pages=149-157&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07117g&rft_dat=%3Cproquest%3E2755892656%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755892656&rft_id=info:pmid/&rfr_iscdi=true |