In situ surface-trap passivation of CuBi2O4 photocathodes for unbiased solar water splitting

Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-01, Vol.11 (1), p.149-157
Hauptverfasser: Hu, Yingfei, Wang, Jun, Huang, Huiting, Feng, Jianyong, Liu, Wangxi, Guan, Hangmin, Hao, Lingyun, Li, Zhaosheng, Zou, Zhigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passivating surface traps plays a crucial role in mitigating the efficiency loss of solar water-splitting electrodes. However, the associated surface-trap passivation approaches require the introduction of an overlayer, complicating the fabrication process and increasing the capital cost of photoelectrodes. Herein, using CuBi2O4 as a prototype, an in situ surface-trap passivation strategy is developed, which yields a beneficial 90 mV anodic shift in hydrogen-evolution onset. Detailed mechanism investigations prove that the intentionally added Mg2+ ions in the precursor gradually segregate as MgO and enrich at the grain boundaries/surface of the CuBi2O4 multicrystalline, porous film during annealing, via which surface traps stemming from dangling bonds are spontaneously passivated; measurements of photovoltage generation characteristics and carrier lifetime validate the favorable roles of the MgO passivator in CuBi2O4 photocathodes. A bias-free water-splitting device is assembled using MgO-passivated CuBi2O4 and Mo-doped BiVO4 as the photocathode and photoanode respectively in a tandem configuration, delivering a solar-to-hydrogen conversion efficiency of approximately 0.41%.
ISSN:2050-7488
2050-7496
DOI:10.1039/d2ta07117g