Structural properties of skew-cyclic codes over a finite ring
In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2022-12, Vol.2641 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 2641 |
creator | Suprijanto, Djoko Tang, Hopein Christofen |
description | In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above. |
doi_str_mv | 10.1063/5.0114984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2755659038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755659038</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1334-d83e78d31e71edc8fb241239300b1831162b32ebfb3216cbf48294d4dc8c1e8c3</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIeBO2ZjLJbvbgQYpVoeBBBW9hN5tIat1dk2ylb--WFrx5mYHhY2b4CbkENgOW442cMQBRKnFEJiAlZEUO-TGZMFaKjAt8PyVnMa4Y42VRqAm5fUlhMGkI1Zr2oettSN5G2jkaP-1PZrZm7Q01XbMbbmygFXW-9cnS4NuPc3LiqnW0F4c-JW-L-9f5Y7Z8fnia3y2zHhBF1ii0hWoQbAG2McrVXADHEhmrQSFAzmvktnZjhdzUTiheikaM1IBVBqfkar93fPF7sDHpVTeEdjypeSFlLkuGalTXexWNT1XyXav74L-qsNXA9C4eLfUhnv_wpgt_UPeNw1_gyGTb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755659038</pqid></control><display><type>article</type><title>Structural properties of skew-cyclic codes over a finite ring</title><source>AIP Journals Complete</source><creator>Suprijanto, Djoko ; Tang, Hopein Christofen</creator><contributor>Mufid, Muhammad Syifa’ul ; Adzkiya, Dieky</contributor><creatorcontrib>Suprijanto, Djoko ; Tang, Hopein Christofen ; Mufid, Muhammad Syifa’ul ; Adzkiya, Dieky</creatorcontrib><description>In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0114984</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><ispartof>AIP conference proceedings, 2022-12, Vol.2641 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0114984$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76255</link.rule.ids></links><search><contributor>Mufid, Muhammad Syifa’ul</contributor><contributor>Adzkiya, Dieky</contributor><creatorcontrib>Suprijanto, Djoko</creatorcontrib><creatorcontrib>Tang, Hopein Christofen</creatorcontrib><title>Structural properties of skew-cyclic codes over a finite ring</title><title>AIP conference proceedings</title><description>In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above.</description><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIeBO2ZjLJbvbgQYpVoeBBBW9hN5tIat1dk2ylb--WFrx5mYHhY2b4CbkENgOW442cMQBRKnFEJiAlZEUO-TGZMFaKjAt8PyVnMa4Y42VRqAm5fUlhMGkI1Zr2oettSN5G2jkaP-1PZrZm7Q01XbMbbmygFXW-9cnS4NuPc3LiqnW0F4c-JW-L-9f5Y7Z8fnia3y2zHhBF1ii0hWoQbAG2McrVXADHEhmrQSFAzmvktnZjhdzUTiheikaM1IBVBqfkar93fPF7sDHpVTeEdjypeSFlLkuGalTXexWNT1XyXav74L-qsNXA9C4eLfUhnv_wpgt_UPeNw1_gyGTb</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Suprijanto, Djoko</creator><creator>Tang, Hopein Christofen</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221219</creationdate><title>Structural properties of skew-cyclic codes over a finite ring</title><author>Suprijanto, Djoko ; Tang, Hopein Christofen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1334-d83e78d31e71edc8fb241239300b1831162b32ebfb3216cbf48294d4dc8c1e8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suprijanto, Djoko</creatorcontrib><creatorcontrib>Tang, Hopein Christofen</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suprijanto, Djoko</au><au>Tang, Hopein Christofen</au><au>Mufid, Muhammad Syifa’ul</au><au>Adzkiya, Dieky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural properties of skew-cyclic codes over a finite ring</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-12-19</date><risdate>2022</risdate><volume>2641</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114984</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022-12, Vol.2641 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2755659038 |
source | AIP Journals Complete |
title | Structural properties of skew-cyclic codes over a finite ring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20properties%20of%20skew-cyclic%20codes%20over%20a%20finite%20ring&rft.jtitle=AIP%20conference%20proceedings&rft.au=Suprijanto,%20Djoko&rft.date=2022-12-19&rft.volume=2641&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0114984&rft_dat=%3Cproquest_scita%3E2755659038%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755659038&rft_id=info:pmid/&rfr_iscdi=true |