Structural properties of skew-cyclic codes over a finite ring

In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP Conference Proceedings 2022-12, Vol.2641 (1)
Hauptverfasser: Suprijanto, Djoko, Tang, Hopein Christofen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0114984