Structural properties of skew-cyclic codes over a finite ring
In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide...
Gespeichert in:
Veröffentlicht in: | AIP Conference Proceedings 2022-12, Vol.2641 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we consider the notion of skew-cyclic codes over finite rings with derivations, as introduced by Boucher and Ulmer (2014). We investigate the structural properties of skew-cyclic codes over the finite ring ℤ4+vℤ4, where v2=v, with a derivation on ℤ4+vℤ4. As an application, we provide several optimal linear codes over ℤ4 constructed or derived from the skew-cyclic codes mentioned above. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0114984 |