Effect of dissolved gas on the tensile strength of water
While theoretical estimates suggest that cavitation of water should occur when pressure falls much below −25 MPa at room temperature, in experiments, we commonly observe conversion to vapor at pressures of the order of 3 kPa. The commonly accepted explanation for this discrepancy is that water usual...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-12, Vol.34 (12) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While theoretical estimates suggest that cavitation of water should occur when pressure falls much below −25 MPa at room temperature, in experiments, we commonly observe conversion to vapor at pressures of the order of 3 kPa. The commonly accepted explanation for this discrepancy is that water usually contains nanometer-sized cavitation nuclei. When the pressure decreases, these nuclei expand and become visible to the naked eye. However, the origin of these cavitation nuclei is not well understood. An earlier work in this field has mainly focused on the inception of nuclei which are purely composed of water vapor, whereas experimental data suggest that these nuclei are mainly composed of air. In this Letter, we develop a theoretical approach to study the inception of cavitation nuclei in water with uniformly dissolved air, using a diffuse interface approach. We derive equations which govern the transition of water with uniformly dissolved air to a critical state. Our results show that the dissolved air decreases the free energy barrier from the initial to the critical state, thereby aiding the formation of cavitation nuclei. This study opens up possibilities to explore cavitation inception in fluids containing dissolved gases. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0131165 |