Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations

The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2023-01, Vol.47 (1), p.421-427
Hauptverfasser: Wang, Shutao, Liu, Zhao, Ye, Yanjie, Xu, Meng, Yang, Pengcheng, Zhang, Zhengze, Qiu, Yifeng, Junqiang Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 1
container_start_page 421
container_title New journal of chemistry
container_volume 47
creator Wang, Shutao
Liu, Zhao
Ye, Yanjie
Xu, Meng
Yang, Pengcheng
Zhang, Zhengze
Qiu, Yifeng
Junqiang Lei
description The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.
doi_str_mv 10.1039/d2nj04440d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755567456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755567456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-9c6272aae499087ef846f06309ad588181409d98743367f2e430379496fad3ca3</originalsourceid><addsrcrecordid>eNotjUtLxDAcxIMouD4ufoI_eFFoNa_mIXiQ6qqwj8t68bLENnG71KY2KbgfwO9tUE8zMPObQeiM4CuCmb6uabfFnHNc76EJYULnmgqynzzhPMcFF4foKIQtxoRIQSboe26jaaH3Q7_ZDU0X4GIOt7BqMpjaDEqfwSL5cszAD_DaXYIJqR1tF5vEVSbRuxADuBTHjQX_1dQmNr4D76BcwtsOFnR5A2m6ed9EcIP_gPvpKqFtNba_1XCCDpxpgz3912P0Mn1YlU_5bPn4XN7N8p4oFnNdCSqpMZZrjZW0TnHhsGBYm7pQiijCsa61kpwxIR21nGEmNdfCmZpVhh2j87_dfvCfow1xvfXj0KXLNZVFUQjJC8F-ADj1Xp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755567456</pqid></control><display><type>article</type><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</creator><creatorcontrib>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</creatorcontrib><description>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d2nj04440d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon monoxide ; Catalysts ; Cobalt ; Copper ; Decomposition ; Decomposition reactions ; Density functional theory ; Iron ; Mathematical analysis ; Molecular orbitals ; Nickel ; Nitrous oxide ; Oxidation ; Porphyrins ; Titanium ; Zinc</subject><ispartof>New journal of chemistry, 2023-01, Vol.47 (1), p.421-427</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Shutao</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Ye, Yanjie</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yang, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Zhengze</creatorcontrib><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Junqiang Lei</creatorcontrib><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><title>New journal of chemistry</title><description>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Density functional theory</subject><subject>Iron</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Nickel</subject><subject>Nitrous oxide</subject><subject>Oxidation</subject><subject>Porphyrins</subject><subject>Titanium</subject><subject>Zinc</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjUtLxDAcxIMouD4ufoI_eFFoNa_mIXiQ6qqwj8t68bLENnG71KY2KbgfwO9tUE8zMPObQeiM4CuCmb6uabfFnHNc76EJYULnmgqynzzhPMcFF4foKIQtxoRIQSboe26jaaH3Q7_ZDU0X4GIOt7BqMpjaDEqfwSL5cszAD_DaXYIJqR1tF5vEVSbRuxADuBTHjQX_1dQmNr4D76BcwtsOFnR5A2m6ed9EcIP_gPvpKqFtNba_1XCCDpxpgz3912P0Mn1YlU_5bPn4XN7N8p4oFnNdCSqpMZZrjZW0TnHhsGBYm7pQiijCsa61kpwxIR21nGEmNdfCmZpVhh2j87_dfvCfow1xvfXj0KXLNZVFUQjJC8F-ADj1Xp8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Shutao</creator><creator>Liu, Zhao</creator><creator>Ye, Yanjie</creator><creator>Xu, Meng</creator><creator>Yang, Pengcheng</creator><creator>Zhang, Zhengze</creator><creator>Qiu, Yifeng</creator><creator>Junqiang Lei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20230101</creationdate><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><author>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-9c6272aae499087ef846f06309ad588181409d98743367f2e430379496fad3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Density functional theory</topic><topic>Iron</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Nickel</topic><topic>Nitrous oxide</topic><topic>Oxidation</topic><topic>Porphyrins</topic><topic>Titanium</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shutao</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Ye, Yanjie</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yang, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Zhengze</creatorcontrib><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Junqiang Lei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shutao</au><au>Liu, Zhao</au><au>Ye, Yanjie</au><au>Xu, Meng</au><au>Yang, Pengcheng</au><au>Zhang, Zhengze</au><au>Qiu, Yifeng</au><au>Junqiang Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</atitle><jtitle>New journal of chemistry</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>47</volume><issue>1</issue><spage>421</spage><epage>427</epage><pages>421-427</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nj04440d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2023-01, Vol.47 (1), p.421-427
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2755567456
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Carbon monoxide
Catalysts
Cobalt
Copper
Decomposition
Decomposition reactions
Density functional theory
Iron
Mathematical analysis
Molecular orbitals
Nickel
Nitrous oxide
Oxidation
Porphyrins
Titanium
Zinc
title Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20porphyrins%20(M%20=%20Ti,%20Fe,%20Co,%20Ni,%20Cu,%20or%20Zn)%20as%20potential%20catalysts%20for%20the%20oxidation%20of%20CO%20by%20N2O:%20insight%20from%20DFT%20calculations&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Wang,%20Shutao&rft.date=2023-01-01&rft.volume=47&rft.issue=1&rft.spage=421&rft.epage=427&rft.pages=421-427&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d2nj04440d&rft_dat=%3Cproquest%3E2755567456%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755567456&rft_id=info:pmid/&rfr_iscdi=true