Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations
The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species,...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2023-01, Vol.47 (1), p.421-427 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 1 |
container_start_page | 421 |
container_title | New journal of chemistry |
container_volume | 47 |
creator | Wang, Shutao Liu, Zhao Ye, Yanjie Xu, Meng Yang, Pengcheng Zhang, Zhengze Qiu, Yifeng Junqiang Lei |
description | The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin. |
doi_str_mv | 10.1039/d2nj04440d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755567456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755567456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-9c6272aae499087ef846f06309ad588181409d98743367f2e430379496fad3ca3</originalsourceid><addsrcrecordid>eNotjUtLxDAcxIMouD4ufoI_eFFoNa_mIXiQ6qqwj8t68bLENnG71KY2KbgfwO9tUE8zMPObQeiM4CuCmb6uabfFnHNc76EJYULnmgqynzzhPMcFF4foKIQtxoRIQSboe26jaaH3Q7_ZDU0X4GIOt7BqMpjaDEqfwSL5cszAD_DaXYIJqR1tF5vEVSbRuxADuBTHjQX_1dQmNr4D76BcwtsOFnR5A2m6ed9EcIP_gPvpKqFtNba_1XCCDpxpgz3912P0Mn1YlU_5bPn4XN7N8p4oFnNdCSqpMZZrjZW0TnHhsGBYm7pQiijCsa61kpwxIR21nGEmNdfCmZpVhh2j87_dfvCfow1xvfXj0KXLNZVFUQjJC8F-ADj1Xp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755567456</pqid></control><display><type>article</type><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</creator><creatorcontrib>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</creatorcontrib><description>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d2nj04440d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon monoxide ; Catalysts ; Cobalt ; Copper ; Decomposition ; Decomposition reactions ; Density functional theory ; Iron ; Mathematical analysis ; Molecular orbitals ; Nickel ; Nitrous oxide ; Oxidation ; Porphyrins ; Titanium ; Zinc</subject><ispartof>New journal of chemistry, 2023-01, Vol.47 (1), p.421-427</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Shutao</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Ye, Yanjie</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yang, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Zhengze</creatorcontrib><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Junqiang Lei</creatorcontrib><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><title>New journal of chemistry</title><description>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Density functional theory</subject><subject>Iron</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Nickel</subject><subject>Nitrous oxide</subject><subject>Oxidation</subject><subject>Porphyrins</subject><subject>Titanium</subject><subject>Zinc</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjUtLxDAcxIMouD4ufoI_eFFoNa_mIXiQ6qqwj8t68bLENnG71KY2KbgfwO9tUE8zMPObQeiM4CuCmb6uabfFnHNc76EJYULnmgqynzzhPMcFF4foKIQtxoRIQSboe26jaaH3Q7_ZDU0X4GIOt7BqMpjaDEqfwSL5cszAD_DaXYIJqR1tF5vEVSbRuxADuBTHjQX_1dQmNr4D76BcwtsOFnR5A2m6ed9EcIP_gPvpKqFtNba_1XCCDpxpgz3912P0Mn1YlU_5bPn4XN7N8p4oFnNdCSqpMZZrjZW0TnHhsGBYm7pQiijCsa61kpwxIR21nGEmNdfCmZpVhh2j87_dfvCfow1xvfXj0KXLNZVFUQjJC8F-ADj1Xp8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Shutao</creator><creator>Liu, Zhao</creator><creator>Ye, Yanjie</creator><creator>Xu, Meng</creator><creator>Yang, Pengcheng</creator><creator>Zhang, Zhengze</creator><creator>Qiu, Yifeng</creator><creator>Junqiang Lei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20230101</creationdate><title>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</title><author>Wang, Shutao ; Liu, Zhao ; Ye, Yanjie ; Xu, Meng ; Yang, Pengcheng ; Zhang, Zhengze ; Qiu, Yifeng ; Junqiang Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-9c6272aae499087ef846f06309ad588181409d98743367f2e430379496fad3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Density functional theory</topic><topic>Iron</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Nickel</topic><topic>Nitrous oxide</topic><topic>Oxidation</topic><topic>Porphyrins</topic><topic>Titanium</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shutao</creatorcontrib><creatorcontrib>Liu, Zhao</creatorcontrib><creatorcontrib>Ye, Yanjie</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yang, Pengcheng</creatorcontrib><creatorcontrib>Zhang, Zhengze</creatorcontrib><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Junqiang Lei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shutao</au><au>Liu, Zhao</au><au>Ye, Yanjie</au><au>Xu, Meng</au><au>Yang, Pengcheng</au><au>Zhang, Zhengze</au><au>Qiu, Yifeng</au><au>Junqiang Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations</atitle><jtitle>New journal of chemistry</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>47</volume><issue>1</issue><spage>421</spage><epage>427</epage><pages>421-427</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>The oxidation of CO by N2O over M–porphyrin (M = Ti, Fe, Co, Ni, Cu, and Zn) catalysts has been investigated via density functional theory calculations. The whole reaction process is divided into two steps: the catalytic decomposition of N2O that breaks the N–O bond resulting in O–M active species, and the carbon atoms of the CO molecule reaction with O–M to form CO2. For the rate-controlled step of the reaction, the porphyrins of different metal centers appear in different positions. The barrier height of N2O decomposition on Ti–porphyrin is 3.8 kcal mol−1, and the barrier height of CO oxidation is 21.9 kcal mol−1. The rate-controlled step appears in the process of oxidation of CO. However, for Fe–porphyrin, the barrier height of N2O decomposition is 24.2 kcal mol−1, and the barrier height of CO oxidation is 11.4 kcal mol−1. The rate-controlled step appears in the process of N2O decomposition. For the catalytic decomposition of N2O, the Ti–porphyrin has a low activation energy barrier, which may be due to the smaller gap between the highest occupied molecular orbital (HOMO) of the metal porphyrin and the lowest unoccupied molecular orbital (LUMO) of N2O for Ti–porphyrin compared to Fe–porphyrin.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nj04440d</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1144-0546 |
ispartof | New journal of chemistry, 2023-01, Vol.47 (1), p.421-427 |
issn | 1144-0546 1369-9261 |
language | eng |
recordid | cdi_proquest_journals_2755567456 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Carbon monoxide Catalysts Cobalt Copper Decomposition Decomposition reactions Density functional theory Iron Mathematical analysis Molecular orbitals Nickel Nitrous oxide Oxidation Porphyrins Titanium Zinc |
title | Metal porphyrins (M = Ti, Fe, Co, Ni, Cu, or Zn) as potential catalysts for the oxidation of CO by N2O: insight from DFT calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%20porphyrins%20(M%20=%20Ti,%20Fe,%20Co,%20Ni,%20Cu,%20or%20Zn)%20as%20potential%20catalysts%20for%20the%20oxidation%20of%20CO%20by%20N2O:%20insight%20from%20DFT%20calculations&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Wang,%20Shutao&rft.date=2023-01-01&rft.volume=47&rft.issue=1&rft.spage=421&rft.epage=427&rft.pages=421-427&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d2nj04440d&rft_dat=%3Cproquest%3E2755567456%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755567456&rft_id=info:pmid/&rfr_iscdi=true |