High-performance Zn-ion batteries constructed by in situ conversion of surface-oxidized vanadium nitride into Zn3(OH)2V2O7·2H2O with oxygen defects
Herein, surface-oxidized vanadium nitride (O-VN) is synthesized by a one-step hydrothermal method without multi-step reactions, and is applied as a cathode material for aqueous zinc ion batteries. After in situ electrochemical activation, it turns into Zn3(OH)2V2O7·2H2O with copious oxygen vacancies...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2023-01, Vol.25 (1), p.154-161 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, surface-oxidized vanadium nitride (O-VN) is synthesized by a one-step hydrothermal method without multi-step reactions, and is applied as a cathode material for aqueous zinc ion batteries. After in situ electrochemical activation, it turns into Zn3(OH)2V2O7·2H2O with copious oxygen vacancies/defects. The electrochemical phase transition and in situ defect induction can provide abundant active sites for the storage of Zn2+, thus increasing the energy storage performance of electrode materials. As expected, Zn3(OH)2V2O7·2H2O with oxygen defects has good structural and morphological stability during cycling, and exhibits excellent specific capacity (510 mA h g−1 at 0.1 A g−1 and 199 mA h g−1 at 10 A g−1) and superior cycle stability (72.6% capacity retention after 3000 cycles at 20 A g−1). |
---|---|
ISSN: | 1466-8033 |
DOI: | 10.1039/d2ce01241c |