Application of Malliavin Calculus in Mean-Variance Hedging Strategy
This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-12, Vol.2022, p.1-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Liu, Kefan Chen, Jingyao Zhang, Jichao Tan, Xili |
description | This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time. |
doi_str_mv | 10.1155/2022/3096866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755347582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755347582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqWw8QMiMUKo_RI7zlhFQJGoGPgQm_Xq2MVVcIKdgPrvSdXOTPcOR_dKh5BLRm8Z43wGFGCW0VJIIY7IhHGRpZzlxfHYKeQpg-zjlJzFuKEUGGdyQqp51zVOY-9an7Q2WWLTOPxxPqmw0UMzxGTsS4M-fcfg0GuTLEy9dn6dvPQBe7PenpMTi000F4eckrf7u9dqkT49PzxW86dUA-R9aoRkXIuS13KlJXAJYHld53ZlmbQ01wIML21ZQK1XBgAyaTmyUjJRotUym5Kr_W4X2u_BxF5t2iH48VJBwXmWF-PmSN3sKR3aGIOxqgvuC8NWMap2mtROkzpoGvHrPf7pfI2_7n_6DyWlZfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755347582</pqid></control><display><type>article</type><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili</creator><contributor>Cacace, Filippo ; Filippo Cacace</contributor><creatorcontrib>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili ; Cacace, Filippo ; Filippo Cacace</creatorcontrib><description>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3096866</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Decomposition ; Fast Fourier transformations ; Hedging ; Interest rates ; Martingales ; Representations ; Stochastic models ; Stochastic processes ; Volatility</subject><ispartof>Mathematical problems in engineering, 2022-12, Vol.2022, p.1-17</ispartof><rights>Copyright © 2022 Kefan Liu et al.</rights><rights>Copyright © 2022 Kefan Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</cites><orcidid>0000-0001-6778-5306 ; 0000-0002-2036-2274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Cacace, Filippo</contributor><contributor>Filippo Cacace</contributor><creatorcontrib>Liu, Kefan</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Zhang, Jichao</creatorcontrib><creatorcontrib>Tan, Xili</creatorcontrib><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><title>Mathematical problems in engineering</title><description>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Fast Fourier transformations</subject><subject>Hedging</subject><subject>Interest rates</subject><subject>Martingales</subject><subject>Representations</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Volatility</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURS0EEqWw8QMiMUKo_RI7zlhFQJGoGPgQm_Xq2MVVcIKdgPrvSdXOTPcOR_dKh5BLRm8Z43wGFGCW0VJIIY7IhHGRpZzlxfHYKeQpg-zjlJzFuKEUGGdyQqp51zVOY-9an7Q2WWLTOPxxPqmw0UMzxGTsS4M-fcfg0GuTLEy9dn6dvPQBe7PenpMTi000F4eckrf7u9dqkT49PzxW86dUA-R9aoRkXIuS13KlJXAJYHld53ZlmbQ01wIML21ZQK1XBgAyaTmyUjJRotUym5Kr_W4X2u_BxF5t2iH48VJBwXmWF-PmSN3sKR3aGIOxqgvuC8NWMap2mtROkzpoGvHrPf7pfI2_7n_6DyWlZfw</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Liu, Kefan</creator><creator>Chen, Jingyao</creator><creator>Zhang, Jichao</creator><creator>Tan, Xili</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6778-5306</orcidid><orcidid>https://orcid.org/0000-0002-2036-2274</orcidid></search><sort><creationdate>20221205</creationdate><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><author>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Fast Fourier transformations</topic><topic>Hedging</topic><topic>Interest rates</topic><topic>Martingales</topic><topic>Representations</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kefan</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Zhang, Jichao</creatorcontrib><creatorcontrib>Tan, Xili</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kefan</au><au>Chen, Jingyao</au><au>Zhang, Jichao</au><au>Tan, Xili</au><au>Cacace, Filippo</au><au>Filippo Cacace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-12-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3096866</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6778-5306</orcidid><orcidid>https://orcid.org/0000-0002-2036-2274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-12, Vol.2022, p.1-17 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2755347582 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Decomposition Fast Fourier transformations Hedging Interest rates Martingales Representations Stochastic models Stochastic processes Volatility |
title | Application of Malliavin Calculus in Mean-Variance Hedging Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Malliavin%20Calculus%20in%20Mean-Variance%20Hedging%20Strategy&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Kefan&rft.date=2022-12-05&rft.volume=2022&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3096866&rft_dat=%3Cproquest_cross%3E2755347582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755347582&rft_id=info:pmid/&rfr_iscdi=true |