Application of Malliavin Calculus in Mean-Variance Hedging Strategy

This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-12, Vol.2022, p.1-17
Hauptverfasser: Liu, Kefan, Chen, Jingyao, Zhang, Jichao, Tan, Xili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Liu, Kefan
Chen, Jingyao
Zhang, Jichao
Tan, Xili
description This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.
doi_str_mv 10.1155/2022/3096866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755347582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755347582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqWw8QMiMUKo_RI7zlhFQJGoGPgQm_Xq2MVVcIKdgPrvSdXOTPcOR_dKh5BLRm8Z43wGFGCW0VJIIY7IhHGRpZzlxfHYKeQpg-zjlJzFuKEUGGdyQqp51zVOY-9an7Q2WWLTOPxxPqmw0UMzxGTsS4M-fcfg0GuTLEy9dn6dvPQBe7PenpMTi000F4eckrf7u9dqkT49PzxW86dUA-R9aoRkXIuS13KlJXAJYHld53ZlmbQ01wIML21ZQK1XBgAyaTmyUjJRotUym5Kr_W4X2u_BxF5t2iH48VJBwXmWF-PmSN3sKR3aGIOxqgvuC8NWMap2mtROkzpoGvHrPf7pfI2_7n_6DyWlZfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755347582</pqid></control><display><type>article</type><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili</creator><contributor>Cacace, Filippo ; Filippo Cacace</contributor><creatorcontrib>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili ; Cacace, Filippo ; Filippo Cacace</creatorcontrib><description>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3096866</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Decomposition ; Fast Fourier transformations ; Hedging ; Interest rates ; Martingales ; Representations ; Stochastic models ; Stochastic processes ; Volatility</subject><ispartof>Mathematical problems in engineering, 2022-12, Vol.2022, p.1-17</ispartof><rights>Copyright © 2022 Kefan Liu et al.</rights><rights>Copyright © 2022 Kefan Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</cites><orcidid>0000-0001-6778-5306 ; 0000-0002-2036-2274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Cacace, Filippo</contributor><contributor>Filippo Cacace</contributor><creatorcontrib>Liu, Kefan</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Zhang, Jichao</creatorcontrib><creatorcontrib>Tan, Xili</creatorcontrib><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><title>Mathematical problems in engineering</title><description>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>Fast Fourier transformations</subject><subject>Hedging</subject><subject>Interest rates</subject><subject>Martingales</subject><subject>Representations</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Volatility</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAURS0EEqWw8QMiMUKo_RI7zlhFQJGoGPgQm_Xq2MVVcIKdgPrvSdXOTPcOR_dKh5BLRm8Z43wGFGCW0VJIIY7IhHGRpZzlxfHYKeQpg-zjlJzFuKEUGGdyQqp51zVOY-9an7Q2WWLTOPxxPqmw0UMzxGTsS4M-fcfg0GuTLEy9dn6dvPQBe7PenpMTi000F4eckrf7u9dqkT49PzxW86dUA-R9aoRkXIuS13KlJXAJYHld53ZlmbQ01wIML21ZQK1XBgAyaTmyUjJRotUym5Kr_W4X2u_BxF5t2iH48VJBwXmWF-PmSN3sKR3aGIOxqgvuC8NWMap2mtROkzpoGvHrPf7pfI2_7n_6DyWlZfw</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Liu, Kefan</creator><creator>Chen, Jingyao</creator><creator>Zhang, Jichao</creator><creator>Tan, Xili</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6778-5306</orcidid><orcidid>https://orcid.org/0000-0002-2036-2274</orcidid></search><sort><creationdate>20221205</creationdate><title>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</title><author>Liu, Kefan ; Chen, Jingyao ; Zhang, Jichao ; Tan, Xili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-e6815c695d8bc825822f5dd4fbf18f04c62e59f972dcbe22238f5a198169afc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>Fast Fourier transformations</topic><topic>Hedging</topic><topic>Interest rates</topic><topic>Martingales</topic><topic>Representations</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kefan</creatorcontrib><creatorcontrib>Chen, Jingyao</creatorcontrib><creatorcontrib>Zhang, Jichao</creatorcontrib><creatorcontrib>Tan, Xili</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kefan</au><au>Chen, Jingyao</au><au>Zhang, Jichao</au><au>Tan, Xili</au><au>Cacace, Filippo</au><au>Filippo Cacace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Malliavin Calculus in Mean-Variance Hedging Strategy</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-12-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3096866</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6778-5306</orcidid><orcidid>https://orcid.org/0000-0002-2036-2274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-12, Vol.2022, p.1-17
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2755347582
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Decomposition
Fast Fourier transformations
Hedging
Interest rates
Martingales
Representations
Stochastic models
Stochastic processes
Volatility
title Application of Malliavin Calculus in Mean-Variance Hedging Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Malliavin%20Calculus%20in%20Mean-Variance%20Hedging%20Strategy&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Liu,%20Kefan&rft.date=2022-12-05&rft.volume=2022&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3096866&rft_dat=%3Cproquest_cross%3E2755347582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755347582&rft_id=info:pmid/&rfr_iscdi=true