Application of Malliavin Calculus in Mean-Variance Hedging Strategy

This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-12, Vol.2022, p.1-17
Hauptverfasser: Liu, Kefan, Chen, Jingyao, Zhang, Jichao, Tan, Xili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers an approach of Malliavin calculus to obtain the hedging ratio for mean-variance hedging (MVH) strategy under the stochastic volatility model with pure jump Lévy process (SVJ). Specifically speaking, there exists a correspondence between the martingale representation theorem and the Clark-Ocone formula for a square integrable contingent claim. Therefore, we can replace the diffusion term coefficients with the functions containing Malliavin derivatives to get a closed-form representation for the MVH strategy. By fast Fourier transform (FFT) algorithm, some numerical examples are performed to analyze the sensitivity of MVH strategy concerning strike price and current time.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/3096866