Causal functional calculus
We construct a new topology on the space of stopped paths and introduce a calculus for causal functionals on generic domains of this space. We propose a generic approach to pathwise integration without any assumption on the variation index of a path and obtain functional change of variable formulae...
Gespeichert in:
Veröffentlicht in: | Transactions of The London Mathematical Society 2022-12, Vol.9 (1), p.237-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a new topology on the space of stopped paths and introduce a calculus for causal functionals on generic domains of this space. We propose a generic approach to pathwise integration without any assumption on the variation index of a path and obtain functional change of variable formulae which extend the results of Föllmer [Séminaire de probabilités 15 (1981), 143–150] and Cont and Fournié [J. Funct. Anal. 259 (2010), no. 4, 1043–1072] to a larger class of functionals, including Föllmer's pathwise integrals. We show that a class of smooth functionals possess a pathwise analogue of the martingale property. For paths that possess finite quadratic variation, our approach extends the Föllmer–Ito calculus and removes previous restriction on the time partition sequence. We introduce a foliation structure on this path space and show that harmonic functionals may be represented as pathwise integrals of closed 1‐forms. |
---|---|
ISSN: | 2052-4986 2052-4986 |
DOI: | 10.1112/tlm3.12050 |