RWEN-TTS: Relation-aware Word Encoding Network for Natural Text-to-Speech Synthesis

With the advent of deep learning, a huge number of text-to-speech (TTS) models which produce human-like speech have emerged. Recently, by introducing syntactic and semantic information w.r.t the input text, various approaches have been proposed to enrich the naturalness and expressiveness of TTS mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Oh, Shinhyeok, Noh, HyeongRae, Hong, Yoonseok, Oh, Insoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of deep learning, a huge number of text-to-speech (TTS) models which produce human-like speech have emerged. Recently, by introducing syntactic and semantic information w.r.t the input text, various approaches have been proposed to enrich the naturalness and expressiveness of TTS models. Although these strategies showed impressive results, they still have some limitations in utilizing language information. First, most approaches only use graph networks to utilize syntactic and semantic information without considering linguistic features. Second, most previous works do not explicitly consider adjacent words when encoding syntactic and semantic information, even though it is obvious that adjacent words are usually meaningful when encoding the current word. To address these issues, we propose Relation-aware Word Encoding Network (RWEN), which effectively allows syntactic and semantic information based on two modules (i.e., Semantic-level Relation Encoding and Adjacent Word Relation Encoding). Experimental results show substantial improvements compared to previous works.
ISSN:2331-8422