Decoding Short LDPC Codes via BP-RNN Diversity and Reliability-Based Post-Processing

This paper investigates decoder diversity architectures for short low-density parity-check (LDPC) codes, based on recurrent neural network (RNN) models of the belief-propagation (BP) algorithm. We propose a new approach to achieve decoder diversity in the waterfall region, by specializing BP-RNN dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2022-12, Vol.70 (12), p.7830-7842
Hauptverfasser: Rosseel, Joachim, Mannoni, Valerian, Fijalkow, Inbar, Savin, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates decoder diversity architectures for short low-density parity-check (LDPC) codes, based on recurrent neural network (RNN) models of the belief-propagation (BP) algorithm. We propose a new approach to achieve decoder diversity in the waterfall region, by specializing BP-RNN decoders to specific classes of errors, with absorbing set support. We further combine our approach with an ordered statistics decoding (OSD) post-processing step, which effectively leverages the bit-error rate optimization deriving from the use of the binary cross-entropy loss function. We show that a single specialized BP-RNN decoder combines better than BP with the OSD post-processing step. Moreover, combining OSD post-processing with the diversity brought by the use of multiple BP-RNN decoders, provides an efficient way to bridge the gap to maximum likelihood decoding.
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2022.3218821