A Fast Large-Scale Path Planning Method on Lunar DEM Using Distributed Tile Pyramid Strategy

In lunar exploration missions, path planning for lunar rovers using digital elevation models (DEMs) is currently a hot topic in academic research. However, research on path planning using large-scale DEMs has rarely been discussed, owing to the low time efficiency of existing algorithms. Therefore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2023, Vol.16, p.344-355
Hauptverfasser: Hong, Zhonghua, Tu, Bin, Tong, Xiaohua, Pan, Haiyan, Zhou, Ruyan, Zhang, Yun, Han, Yanling, Wang, Jing, Yang, Shuhu, Ma, Zhenling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In lunar exploration missions, path planning for lunar rovers using digital elevation models (DEMs) is currently a hot topic in academic research. However, research on path planning using large-scale DEMs has rarely been discussed, owing to the low time efficiency of existing algorithms. Therefore, in this article, we propose a fast path-planning method using a distributed tile pyramid strategy and an improved A * algorithm. The proposed method consists of three main steps. First, the tile pyramid is generated for the large lunar DEM and stored in Hadoop distributed file system. Second, a distributed path-planning strategy based on tile pyramid (DPPS-TP) is used to accelerate path-planning tasks on large-scale lunar DEMs using Spark and Hadoop. Finally, an improved A * algorithm was proposed to improve the speed of the path-planning task in each tile. The method was tested using lunar DEM images. Experimental results demonstrate that: in a single-machine serial strategy using source DEM generated by the Chang'e-2 CCD stereo camera, the proposed A * algorithm for open list and closed list with random access feature (OC-RA-A * algorithm) is 3.59 times faster than the traditional A * algorithm in long-distance path planning tasks and compared to the distributed parallel computation strategy using source DEM generated by the Chang'e-2 CCD stereo camera, the proposed DPPS-TP based on tile pyramid DEM is 113.66 times faster in the long-range path planning task.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3226527