LINEAR COMBINATIONS OF HURWITZ ZETA-FUNCTIONS
We study the distribution of zeros of finite linear combinations of Hurwitz zeta-functions plus an arbitrary constant, and prove a Riemann-von Mangoldt type formula for their number of non-trivial zeros. Finally, as an application, we show that two Hurwitz zeta-functions sharing a complex value are...
Gespeichert in:
Veröffentlicht in: | Kyushu Journal of Mathematics 2022, Vol.76(1), pp.27-41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the distribution of zeros of finite linear combinations of Hurwitz zeta-functions plus an arbitrary constant, and prove a Riemann-von Mangoldt type formula for their number of non-trivial zeros. Finally, as an application, we show that two Hurwitz zeta-functions sharing a complex value are already identical, as well as a similar (more general) result about the uniqueness of linear combinations. |
---|---|
ISSN: | 1340-6116 1883-2032 |
DOI: | 10.2206/kyushujm.76.27 |