3-Amino-4-hydroxybenzoic acid production from glucose and/or xylose via recombinant Streptomyces lividans
The aromatic compound 3-amino-4-hydroxybenzoic acid (3,4-AHBA) can be employed as a raw material for high-performance industrial plastics. The aim of this study is to produce 3,4-AHBA via a recombinant Streptomyces lividans strain containing griI and griH genes derived from Streptomyces griseus usin...
Gespeichert in:
Veröffentlicht in: | Journal of general and applied microbiology 2022, Vol.68(2), pp.109-116 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aromatic compound 3-amino-4-hydroxybenzoic acid (3,4-AHBA) can be employed as a raw material for high-performance industrial plastics. The aim of this study is to produce 3,4-AHBA via a recombinant Streptomyces lividans strain containing griI and griH genes derived from Streptomyces griseus using culture medium with glucose and/or xylose, which are the main components in lignocellulosic biomass. Production of 3,4-AHBA by the recombinant S. lividans strain was successful, and the productivity was affected by the kind of sugar used as an additional carbon source. Metabolic profiles revealed that L aspartate-4-semialdehyde (ASA), a precursor of 3,4-AHBA, and coenzyme NADPH were supplied in greater amounts in xylose medium than in glucose medium. Moreover, cultivation in TSB medium with a mixed sugar (glucose/xylose) was found to be effective for 3,4-AHBA production, and optimal conditions for efficient production were designed by changing the ratio of glucose to xylose. The best productivity of 2.70 g/L was achieved using a sugar mixture of 25 g/L glucose and 25 g/L xylose, which was 1.5 times higher than the result using 50 g/L glucose alone. These results suggest that Streptomyces is a suitable candidate platform for 3,4-AHBA production from lignocellulosic biomass-derived sugars under appropriate culture conditions. |
---|---|
ISSN: | 0022-1260 1349-8037 |
DOI: | 10.2323/jgam.2022.06.001 |