Adversarial Example Detection Based on Improved GhostBusters

In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBuster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2022/11/01, Vol.E105.D(11), pp.1921-1922
Hauptverfasser: KIM, Hyunghoon, SHIN, Jiwoo, JO, Hyo Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBusters that detects phantom attacks. The proposed model uses a new feature, i.e, frequency of images. Experimental results show that F-GhostBusters not only improves the detection performance of GhostBusters but also can complement the accuracy against adversarial examples.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2022NGL0005