Weak limit of homeomorphisms in \(W^{1,n-1}\): invertibility and lower semicontinuity of energy
Let \(\Omega\), \(\Omega'\subset\mathbb{R}^n\) be bounded domains and let \(f_m\colon\Omega\to\Omega'\) be a sequence of homeomorphisms with positive Jacobians \(J_{f_m} >0\) a.e. and prescribed Dirichlet boundary data. Let all \(f_m\) satisfy the Lusin (N) condition and \(\sup_m \int_{...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\Omega\), \(\Omega'\subset\mathbb{R}^n\) be bounded domains and let \(f_m\colon\Omega\to\Omega'\) be a sequence of homeomorphisms with positive Jacobians \(J_{f_m} >0\) a.e. and prescribed Dirichlet boundary data. Let all \(f_m\) satisfy the Lusin (N) condition and \(\sup_m \int_{\Omega}(|Df_m|^{n-1}+A(|\text{cof} Df_m|)+\phi(J_f)) |
---|---|
ISSN: | 2331-8422 |