The organic co-crystals formed using naphthalenediimide-based triangular macrocycles and coronene: intermolecular charge transfers and nonlinear optical properties
Formation of organic co-crystals is an effective strategy to synthesize near infrared emission and nonlinear optical (NLO) materials, which often show "1 + 1 > 2" performance. Moreover, the crystallization process can be effectively regulated through supramolecular interactions; thus th...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-12, Vol.24 (48), p.29747-29756 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Formation of organic co-crystals is an effective strategy to synthesize near infrared emission and nonlinear optical (NLO) materials, which often show "1 + 1 > 2" performance. Moreover, the crystallization process can be effectively regulated through supramolecular interactions; thus the properties of co-crystal materials can also be flexibly regulated. Here, in order to further understand the nature and formation mechanism of co-crystals from the perspective of theoretical research, we studied the structures, intermolecular interactions, absorption spectra, charge transfer (CT) characteristics and nonlinear optical (NLO) properties of the newly synthesized organic co-crystals formed between naphthalenediimide based triangles (NDI, acceptor) and coronene (COR, donor). According to the analysis of decomposition of intermolecular interaction energy, dispersion energy played a major role, so the co-crystal properties can be regulated by regulating the intermolecular dispersion energy. More importantly, the formation of co-crystals NDI-COR and NDI-2COR reduced the
E
gap
values with respect to those of their components. And there was significant intermolecular CT from COR to NDI and the degree of CT in NDI-COR was larger than that in NDI-2COR, so that the
α
tot
and
γ
tot
values of NDI-COR and NDI-2COR were significantly greater than those of their components. Thus, the NLO properties of organic co-crystals can be further improved by enhancing the electron-donating ability of the donor and the electron-withdrawing ability of the acceptor to enhance the degree of intermolecular interaction energy and CT.
The second hyperpolarizability
γ
tot
values of NDI-COR and NDI-2COR were significantly greater than those of their components, indicating that the formation of organic co-crystals between COR and NDI is an effective way to improve their NLO properties. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d2cp03236h |