Non‐parametric short‐ and long‐run Granger causality testing in the frequency domain

Herein, we propose a novel non‐parametric frequency Granger causality test. We apply a filtering process in the time domain to remove possible spurious causality, thereby eliminating potential interference. Thereafter, in the frequency domain, we perform a local kernel regression for each frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2023-01, Vol.44 (1), p.69-92
1. Verfasser: Taufemback, Cleiton Guollo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we propose a novel non‐parametric frequency Granger causality test. We apply a filtering process in the time domain to remove possible spurious causality, thereby eliminating potential interference. Thereafter, in the frequency domain, we perform a local kernel regression for each frequency and test the non‐causality hypothesis from the distance between each estimate to zero. We provide asymptotic results for strict stationary series concerning α‐mixing conditions. Our method can also perform group causality tests, a feature that is absent in most alternative methods. Monte Carlo experiments illustrate that our method is comparable, and in some cases, performs better than alternative methods in the literature. Finally, we test the causality between monetary policy variables and stock prices.
ISSN:0143-9782
1467-9892
DOI:10.1111/jtsa.12650