Multispectral lidar method for monitoring the forest ecosystem under the forest canopy

This study demonstrates the potential of the multispectral lidar method to monitor the forest ecosystem under the forest canopy. The mathematical modeling results of forest territories elements classification on the created neural network using experimentally measured reflection coefficients are pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-12, Vol.2388 (1), p.12145
Hauptverfasser: Belov, M L, Belov, A M, Gorodnichev, V A, Alkov, S V, Ivanov, S E, Shkarupilo, A A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study demonstrates the potential of the multispectral lidar method to monitor the forest ecosystem under the forest canopy. The mathematical modeling results of forest territories elements classification on the created neural network using experimentally measured reflection coefficients are presented. It is shown that the neural network provides a high probability of correct classification for the forest ecosystem elements classification task (when using lidar measurement data about the height of the forest ecosystem elements). Laser pulse sounding at two wavelengths in near infrared spectral range 1064 and 2030 nm and the created neural network provide the probabilities of correctly classify the undergrowth of green broadleaved and coniferous trees, swamps and soils more than 0.84 and the probability of incorrect classification less than 0.08.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2388/1/012145