Multiplicity of Solutions for Non-homogeneous Dirichlet Problem with One-Dimension Minkowski-Curvature Operator
In this work, we study the multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator ( u ′ 1 - κ u ′ 2 ) ′ + f ( u ) = 0 , t ∈ ( 0 , 1 ) , u ( 0 ) = s A , u ( 1 ) = s B , where κ > 0 is a constant, A , B ∈ R are constants, s ∈ R is a parameter...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2022-12, Vol.21 (4), Article 145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator
(
u
′
1
-
κ
u
′
2
)
′
+
f
(
u
)
=
0
,
t
∈
(
0
,
1
)
,
u
(
0
)
=
s
A
,
u
(
1
)
=
s
B
,
where
κ
>
0
is a constant,
A
,
B
∈
R
are constants,
s
∈
R
is a parameter and
f
:
[
0
,
∞
)
→
R
is continuous. The results depend on the values of the real numbers
s
,
A
,
B
and on the behaviour of
f
(
u
)/
u
for
u
near zero. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-022-00675-x |