Multiplicity of Solutions for Non-homogeneous Dirichlet Problem with One-Dimension Minkowski-Curvature Operator

In this work, we study the multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator ( u ′ 1 - κ u ′ 2 ) ′ + f ( u ) = 0 , t ∈ ( 0 , 1 ) , u ( 0 ) = s A , u ( 1 ) = s B , where κ > 0 is a constant, A , B ∈ R are constants, s ∈ R is a parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2022-12, Vol.21 (4), Article 145
Hauptverfasser: Lu, Yanqiong, Li, Zhiqiang, Chen, Tianlan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the multiplicity of solutions for non-homogeneous Dirichlet problem with one-dimension Minkowski-curvature operator ( u ′ 1 - κ u ′ 2 ) ′ + f ( u ) = 0 , t ∈ ( 0 , 1 ) , u ( 0 ) = s A , u ( 1 ) = s B , where κ > 0 is a constant, A , B ∈ R are constants, s ∈ R is a parameter and f : [ 0 , ∞ ) → R is continuous. The results depend on the values of the real numbers s ,  A ,  B and on the behaviour of f ( u )/ u for u near zero.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-022-00675-x