A Proof of the Grundy domination strong product conjecture
The Grundy domination number of a simple graph \(G = (V,E)\) is the length of the longest sequence of unique vertices \(S = (v_1, \ldots, v_k)\), \(v_i \in V\), that satisfies the property \(N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset\) for each \(i \in [k]\). Here, \(N(v) = \{u : uv \in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Grundy domination number of a simple graph \(G = (V,E)\) is the length of the longest sequence of unique vertices \(S = (v_1, \ldots, v_k)\), \(v_i \in V\), that satisfies the property \(N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset\) for each \(i \in [k]\). Here, \(N(v) = \{u : uv \in E\}\) and \(N[v] = N(v) \cup \{v\}\). In this note, we prove a recent conjecture about the Grundy domination number of the strong product of two graphs. We then discuss how this result relates to the zero forcing number of the strong product of graphs. |
---|---|
ISSN: | 2331-8422 |