A Proof of the Grundy domination strong product conjecture

The Grundy domination number of a simple graph \(G = (V,E)\) is the length of the longest sequence of unique vertices \(S = (v_1, \ldots, v_k)\), \(v_i \in V\), that satisfies the property \(N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset\) for each \(i \in [k]\). Here, \(N(v) = \{u : uv \in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Herrman, Rebekah, Smith, Stephen G Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Grundy domination number of a simple graph \(G = (V,E)\) is the length of the longest sequence of unique vertices \(S = (v_1, \ldots, v_k)\), \(v_i \in V\), that satisfies the property \(N[v_i] \setminus \cup_{j=1}^{i-1}N[v_j] \neq \emptyset\) for each \(i \in [k]\). Here, \(N(v) = \{u : uv \in E\}\) and \(N[v] = N(v) \cup \{v\}\). In this note, we prove a recent conjecture about the Grundy domination number of the strong product of two graphs. We then discuss how this result relates to the zero forcing number of the strong product of graphs.
ISSN:2331-8422