Temperature, cardiovascular mortality, and the role of hypertension and renin–angiotensin–aldosterone axis in seasonal adversity: a narrative review

Environmental temperature is now well known to have a U-shaped relationship with cardiovascular (CV) and all-cause mortality. Both heat and cold above and below an optimum temperature, respectively, are associated with adverse outcomes. However, cold in general and moderate cold specifically is pred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human hypertension 2022-12, Vol.36 (12), p.1035-1047
Hauptverfasser: Goel, Harsh, Shah, Kashyap, Kumar, Ashish, Hippen, John T., Nadar, Sunil K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Environmental temperature is now well known to have a U-shaped relationship with cardiovascular (CV) and all-cause mortality. Both heat and cold above and below an optimum temperature, respectively, are associated with adverse outcomes. However, cold in general and moderate cold specifically is predominantly responsible for much of temperature-attributable adversity. Importantly, hypertension—the most important CV risk factor—has seasonal variation such that BP is significantly higher in winter. Besides worsening BP control in established hypertensives, cold-induced BP increase also contributes to long-term BP variability among normotensive and pre-hypertensive patients, also a known CV risk factor. Disappointingly, despite the now well-stablished impact of temperature on BP and on CV mortality separately, direct linkage between seasonal BP change and CV outcomes remains preliminary. Proving or disproving this link is of immense clinical and public health importance because if seasonal BP variation contributes to seasonal adversity, this should be a modifiable risk. Mechanistically, existing evidence strongly suggests a central role of the sympathetic nervous system (SNS), and secondarily, the renin–angiotensin–aldosterone axis (RAAS) in mediating cold-induced BP increase. Though numerous other inflammatory, metabolic, and vascular perturbations likely also contribute, these may also well be secondary to cold-induced SNS/RAAS activation. This review aims to summarize the current evidence linking temperature, BP and CV outcomes. We also examine underlying mechanisms especially in regard to the SNS/RAAS axis, and highlight possible mitigation measures for clinicians.
ISSN:0950-9240
1476-5527
DOI:10.1038/s41371-022-00707-8