Study on the Optimal Volume Fracturing Design for Horizontal Wells in Tight Oil Reservoirs

The application of horizontal well volume fracturing technology is an important method for enhancing oil recovery in tight oil reservoirs. However, the influence mechanism of the fracture placement scheme (FPC) on postfracturing productivity is still unclear. Based on the theory of the black oil mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-12, Vol.14 (23), p.15531
Hauptverfasser: Jie, Yenan, Yang, Jing, Zhou, Desheng, Wang, Haiyang, Zou, Yi, Liu, Yafei, Zhang, Yanjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of horizontal well volume fracturing technology is an important method for enhancing oil recovery in tight oil reservoirs. However, the influence mechanism of the fracture placement scheme (FPC) on postfracturing productivity is still unclear. Based on the theory of the black oil model, combined with the reservoir stimulation characteristics of horizontal well volume fracturing in tight oil reservoirs, this paper established a postfracturing reservoir production simulation model. History fitting was used to verify the accuracy of the production model simulations. A series of numerical simulations was carried out to study the influence mechanisms of the fracture parameters and FPC on productivity. The simulation results show that compared with the fracture conductivity, the fracture length and number are the main parameters affecting tight oil reservoir productivity. Selecting a reasonable fracture length and number can realize the economical and efficient production of tight oil reservoir volume fracturing. Compared with the traditional fracture equal-length scheme, an FPC with an uneven fracture length can increase the cumulative oil production of oil wells. Under the condition of the same total fracture length, the scheme with a staggered distribution of long fractures and short fractures has the largest cumulative oil production over five years. A reasonable well spacing can greatly reduce the impact of interwell interference on postfracturing dual branch horizontal well productivity. When dual branch horizontal well fractures are alternately distributed, the postfracturing productivity is higher. The production simulation model established in this paper provides a method to accurately evaluate the productivity of horizontal wells after volume fracturing, which can provide guidance for the optimization of hydraulic fracturing operation parameters.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142315531