Effects of Sleep Deprivation on Functional Connectivity of Brain Regions after High-Intensity Exercise in Adolescents

Lack of sleep causes central fatigue in the body, which in turn affects brain function, and similarly, intense exercise causes both central and peripheral fatigue. This study aims to characterize the brain state, and in particular the functional changes in the relevant brain regions, after intense e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-12, Vol.14 (23), p.16175
Hauptverfasser: Niu, Xiaodan, Chi, Puyan, Song, Jing, Pang, Yaohui, Wu, Qianqian, Liu, Yang, Chi, Aiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lack of sleep causes central fatigue in the body, which in turn affects brain function, and similarly, intense exercise causes both central and peripheral fatigue. This study aims to characterize the brain state, and in particular the functional changes in the relevant brain regions, after intense exercise in sleep-deprived conditions by detecting EEG signals. Thirty healthy adolescents were screened to participate in the trial, a sleep-deprivation model was developed, and a running exercise was performed the following morning. Meanwhile, pre-exercise and post-exercise Electroencephalogram (EEG) data were collected from the subjects using a 32-conductor electroencephalogram acquisition system (Neuroscan), and the data were analyzed using MATLAB (2013b) to process the data and analyzed Phase Lag Index (PLI) and graph theory metrics for different brain connections. Compared with the control group, the pre-exercise sleep-deprivation group showed significantly lower functional brain connectivity in the central and right temporal lobes in the Delta band (p < 0.05), significantly lower functional brain connectivity in the parietal and occipital regions in the Theta band (p < 0.05), and significantly higher functional brain connectivity in the left temporal and right parietal regions in the Beta2 band (p < 0.05). In the post-exercise sleep-deprivation group, functional brain connectivity was significantly lower in the central to right occipital and central regions in the Delta band (p < 0.05), significantly higher in the whole brain regions in the Theta, Alpha2, and Beta1 bands (p < 0.05 and 0.001), significantly higher in the right central, right parietal, and right temporal regions in the Alpha1 band (p < 0.05), and in the Beta2 band, the functional brain connections from the left frontal region to the right parietal region were significantly lower (p < 0.05). The results of the brain functional network properties showed that the clustering coefficients in the Delta band were significantly lower in the pre-exercise sleep-deprivation group compared to the control group (p < 0.05); the characteristic path length and global efficiency in the Theta band were significantly lower (p < 0.05 and 0.001). The post-exercise sleep-deprivation group showed significantly higher clustering coefficients, input lengths, and local efficiencies (p < 0.001), and significantly lower global efficiencies in the Delta and Theta bands (p < 0.001), and significantly higher clustering co
ISSN:2071-1050
2071-1050
DOI:10.3390/su142316175