Assessment of Agricultural Land Suitability for Surface Irrigation Using Geospatial Techniques in the Lower Omo Gibe Basin, Ethiopia

Land suitability assessment for irrigation is critical to inform as well as manage current and future irrigated agriculture production systems. Land suitability analysis determines whether a given land area could potentially be used for specific crop production. The objective of this study was to id...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-12, Vol.14 (23), p.3887
Hauptverfasser: Hagos, Yonas Gebresilasie, Andualem, Tesfa Gebrie, Yibeltal, Mesenbet, Malede, Demelash Ademe, Melesse, Assefa M., Teshome, Fitsum T., Bayabil, Haimanote K., Kebede, Endalkachew Abebe, Demissie, Ermias Alemu, Mitku, Addisalem Bitew, Mengie, Mequanent Abathun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Land suitability assessment for irrigation is critical to inform as well as manage current and future irrigated agriculture production systems. Land suitability analysis determines whether a given land area could potentially be used for specific crop production. The objective of this study was to identify the availability of suitable land for surface irrigation systems for the production of millet, sorghum, sugarcane, and wheat production in the Lower Omo Gibe plain, Southern Ethiopia. Land suitability analysis was performed by a parametric method using factors such as soil texture, effective soil depth, Calcium Carbonate (CaCO3), soil electrical conductivity (ECe), drainage class, and slope. Five land suitability classes were identified that include highly suitable (S1), moderately suitable (S2), marginally suitable (S3), currently not suitable (N1), and permanently not suitable (N2). Results showed that 6.6, 7.5, 6.6, and 6.6% of the study area mostly located in the western part of the basin, were highly suitable (S1) for irrigated millets, sorghum, sugarcane, and wheat crops production, respectively. However, the mountainous areas in the central part of the basin were classified as N2 due to the steep slope and shallow soil depth. Overall, the results of the study revealed that the use of various suitability analysis techniques could assist in identifying suitable land for irrigated agriculture.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14233887