Application of Hardware-in-the-Loop Simulation Technology in the Development of Electro-Hydraulic Servo System Control Algorithms

In this paper, we present a method to identify paramaters for controlling electro-hydraulic servo systems in a real-time environment. With the aim of addressing the problem that it is difficult to accurately obtain the state space equation parameters of the physical entity of the electro-hydraulic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-12, Vol.11 (23), p.3850
Hauptverfasser: Liang, Quan, Gao, Jun, Liu, Feihong, Wang, Kelei, Zhang, Haiyang, Wang, Zhike, Su, Donghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a method to identify paramaters for controlling electro-hydraulic servo systems in a real-time environment. With the aim of addressing the problem that it is difficult to accurately obtain the state space equation parameters of the physical entity of the electro-hydraulic servo system, we introduce an online identification theory (recursive least squares method) for identifying said parameters of the state space model in a valve-controlled symmetrical cylinder system. After accurately obtaining the parameters of the system, nonlinear control of the valve-controlled symmetrical cylinder system is carried out using a backstepping algorithm. In order to verify the actual effect of the online identification algorithm and backstepping algorithm, a hardware-in-the-loop (HIL) simulation platform for the valve-controlled symmetrical cylinder system is built in a Linux real-time system, and the real-time performance of the system is evaluated, which demonstrates that the platform can be reliably applied for subsequent system identification and backstepping verification. The results of the HIL simulation test demonstrate that the online identification algorithm and backstepping control method developed in this paper are effective and reliable.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11233850