New Exact Solutions of the Diffusion Equation with Power Nonlinearity

We consider the multidimensional nonlinear diffusion equation with a power coefficient. Using some multidimensional quadratic ansatz, we seek for generalized automodel solutions and find new exact solutions in elementary and special functions in case of various exponents. We distinguish the events t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2022, Vol.63 (6), p.1102-1116
Hauptverfasser: Kosov, A. A., Semenov, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the multidimensional nonlinear diffusion equation with a power coefficient. Using some multidimensional quadratic ansatz, we seek for generalized automodel solutions and find new exact solutions in elementary and special functions in case of various exponents. We distinguish the events that the solutions are radially symmetric or spatially anisotropic and exhibit a series of examples demonstrating the novelty of the solutions.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446622060106