On Bhattacharyya relative entropy in a homogenization of composite materials

The main idea of this work is an application of relative entropy in the numerical analysis of probabilistic divergence between original material tensors of the composite constituents and its effective tensor in the presence of material uncertainties. The homogenization method is based upon the defor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2023-01, Vol.124 (2), p.534-541
1. Verfasser: Kamiński, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main idea of this work is an application of relative entropy in the numerical analysis of probabilistic divergence between original material tensors of the composite constituents and its effective tensor in the presence of material uncertainties. The homogenization method is based upon the deformation energy of the representative volume elements for the fiber‐reinforced and particulate composites and uncertainty propagation begins with elastic moduli of the fibers, particles, and composite matrices. Relative entropy follows a mathematical model originating from Bhattacharyya probabilistic divergence and has been applied here for Gaussian distributions. The semi‐analytical probabilistic method based on analytical integration of polynomial bases obtained via the least squares method fittings enables for determination of the basic probabilistic characteristics of the effective tensor and the relative entropies. The methodology invented in this work may be extended toward other probability distributions and relative entropies, for homogenization of nonlinear composites and also accounting for some structural interface defects.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.7155