Predicting the Residual Stress of Amorphous Al2O3-Y2O3 Nano-Laminated Deuterium Permeation Barrier under Thermal Cycles

Al2O3-Y2O3 laminated coating can be applied in fusion reactors to prevent fuel leakage and radiological hazard. However, the residual stress induced by the thermal cycles during the operation of the reactor can cause the failure of the coating. In order to analyze the problem, finite element models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-11, Vol.12 (11), p.1780
Hauptverfasser: Huang, Kezhi, Liu, Hao, Wang, Weijing, Yu, Qinghe, Jiang, Liwu, Liu, Yu, Mi, Jing, Hao, Lei, Yuan, Baolong, Liu, Mingkun, Cai, Rui, Xiao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al2O3-Y2O3 laminated coating can be applied in fusion reactors to prevent fuel leakage and radiological hazard. However, the residual stress induced by the thermal cycles during the operation of the reactor can cause the failure of the coating. In order to analyze the problem, finite element models of Al2O3-Y2O3 laminated coatings with 600 nm of total thickness and different layout were analyzed. The max principal stress site in the coatings is located at the sub-top layer. The max principal stress in laminated coating with the Y2O3 sub-top decreases from 657 MPa for a two-layer coating (300 nm) to 598 MPa for a four-layer coating (150 nm). On the contrary, if Al2O3 is the sub-top layer, the max principal stress increases from 463 MPa for a two-layer coating (300 nm) to 495 MPa for a four-layer coating (150 nm). The result shows that the more deformable amorphous Al2O3 layer in the laminated coating system is more influential to the thermal stress.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12111780