Generalized Partially Linear Single-Index Models

The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1997-06, Vol.92 (438), p.477-489
Hauptverfasser: Carroll, R. J., Fan, Jianqing, Gijbels, Irène, Wand, M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 438
container_start_page 477
container_title Journal of the American Statistical Association
container_volume 92
creator Carroll, R. J.
Fan, Jianqing
Gijbels, Irène
Wand, M. P.
description The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0 Z, where η 0 (·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β 0 = 0. Using local linear methods, we propose estimates of the unknown parameters (α 0 , β 0 ) and the unknown function η 0 (·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.
doi_str_mv 10.1080/01621459.1997.10474001
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_274823451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2965697</jstor_id><sourcerecordid>2965697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</originalsourceid><addsrcrecordid>eNqF0F1LwzAUBuAgCs7pX5Ch4l1nvpNeDtE5mCio4F1I01Q6smYmHTp_vSnbZAhibgLhOS8nLwCnCA4RlPAKIo4RZfkQ5blIT1RQCNEe6CFGRIYFfd0HvQ5lnToERzHOYDpCyh6AY9vYoF39ZcvBow5trZ1bDaZ1Y3UYPNXNm7PZpCnt5-Del9bFY3BQaRftyebug5fbm-fru2z6MJ5cj6aZoYS3meQIGlhBaqjMqYFcW1wJUQhTSoKRpDSnJSmsZNIigSuIGMslqgppcFkQTvrgcp27CP59aWOr5nU01jndWL-MikjGIZcdPPsFZ34ZmrSbSn-XmFCGEjr_C6HUFyEkwaT4WpngYwy2UotQz3VYKQRV17Xadq26rtW26zR4sYnX0WhXBd2YOv5MY4kwZztsFlsfdsMxgULhnDOei8RGa1Y3lQ9z_eGDK1WrV86HbTT5Z6NvWd2aOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274823451</pqid></control><display><type>article</type><title>Generalized Partially Linear Single-Index Models</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Access via Taylor &amp; Francis</source><creator>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</creator><creatorcontrib>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</creatorcontrib><description>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0 Z, where η 0 (·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β 0 = 0. Using local linear methods, we propose estimates of the unknown parameters (α 0 , β 0 ) and the unknown function η 0 (·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1997.10474001</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Asymptotic theory ; Estimation methods ; Estimation theory ; Estimators ; Exact sciences and technology ; Generalized linear models ; Kernel regression ; Linear inference, regression ; Linear models ; Linear regression ; Local estimation ; Local polynomial regression ; Logistics ; Mathematical models ; Mathematics ; Modeling ; Nonparametric inference ; Nonparametric models ; Nonparametric regression ; Parametric models ; Probability and statistics ; Quasi-likelihood ; Regression analysis ; Sciences and techniques of general use ; Statistical methods ; Statistics ; Theory and Methods ; Wands</subject><ispartof>Journal of the American Statistical Association, 1997-06, Vol.92 (438), p.477-489</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><rights>Copyright 1997 American Statistical Association</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Statistical Association Jun 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</citedby><cites>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2965697$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2965697$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2812651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carroll, R. J.</creatorcontrib><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Gijbels, Irène</creatorcontrib><creatorcontrib>Wand, M. P.</creatorcontrib><title>Generalized Partially Linear Single-Index Models</title><title>Journal of the American Statistical Association</title><description>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0 Z, where η 0 (·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β 0 = 0. Using local linear methods, we propose estimates of the unknown parameters (α 0 , β 0 ) and the unknown function η 0 (·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</description><subject>Asymptotic theory</subject><subject>Estimation methods</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Generalized linear models</subject><subject>Kernel regression</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Local estimation</subject><subject>Local polynomial regression</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Nonparametric models</subject><subject>Nonparametric regression</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Quasi-likelihood</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Wands</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0F1LwzAUBuAgCs7pX5Ch4l1nvpNeDtE5mCio4F1I01Q6smYmHTp_vSnbZAhibgLhOS8nLwCnCA4RlPAKIo4RZfkQ5blIT1RQCNEe6CFGRIYFfd0HvQ5lnToERzHOYDpCyh6AY9vYoF39ZcvBow5trZ1bDaZ1Y3UYPNXNm7PZpCnt5-Del9bFY3BQaRftyebug5fbm-fru2z6MJ5cj6aZoYS3meQIGlhBaqjMqYFcW1wJUQhTSoKRpDSnJSmsZNIigSuIGMslqgppcFkQTvrgcp27CP59aWOr5nU01jndWL-MikjGIZcdPPsFZ34ZmrSbSn-XmFCGEjr_C6HUFyEkwaT4WpngYwy2UotQz3VYKQRV17Xadq26rtW26zR4sYnX0WhXBd2YOv5MY4kwZztsFlsfdsMxgULhnDOei8RGa1Y3lQ9z_eGDK1WrV86HbTT5Z6NvWd2aOg</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>Carroll, R. J.</creator><creator>Fan, Jianqing</creator><creator>Gijbels, Irène</creator><creator>Wand, M. P.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19970601</creationdate><title>Generalized Partially Linear Single-Index Models</title><author>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Asymptotic theory</topic><topic>Estimation methods</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Generalized linear models</topic><topic>Kernel regression</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Local estimation</topic><topic>Local polynomial regression</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Nonparametric models</topic><topic>Nonparametric regression</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Quasi-likelihood</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Wands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carroll, R. J.</creatorcontrib><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Gijbels, Irène</creatorcontrib><creatorcontrib>Wand, M. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carroll, R. J.</au><au>Fan, Jianqing</au><au>Gijbels, Irène</au><au>Wand, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Partially Linear Single-Index Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1997-06-01</date><risdate>1997</risdate><volume>92</volume><issue>438</issue><spage>477</spage><epage>489</epage><pages>477-489</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0 Z, where η 0 (·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β 0 = 0. Using local linear methods, we propose estimates of the unknown parameters (α 0 , β 0 ) and the unknown function η 0 (·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1997.10474001</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1997-06, Vol.92 (438), p.477-489
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_274823451
source Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Access via Taylor & Francis
subjects Asymptotic theory
Estimation methods
Estimation theory
Estimators
Exact sciences and technology
Generalized linear models
Kernel regression
Linear inference, regression
Linear models
Linear regression
Local estimation
Local polynomial regression
Logistics
Mathematical models
Mathematics
Modeling
Nonparametric inference
Nonparametric models
Nonparametric regression
Parametric models
Probability and statistics
Quasi-likelihood
Regression analysis
Sciences and techniques of general use
Statistical methods
Statistics
Theory and Methods
Wands
title Generalized Partially Linear Single-Index Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Partially%20Linear%20Single-Index%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Carroll,%20R.%20J.&rft.date=1997-06-01&rft.volume=92&rft.issue=438&rft.spage=477&rft.epage=489&rft.pages=477-489&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1997.10474001&rft_dat=%3Cjstor_proqu%3E2965697%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274823451&rft_id=info:pmid/&rft_jstor_id=2965697&rfr_iscdi=true