Generalized Partially Linear Single-Index Models
The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1997-06, Vol.92 (438), p.477-489 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 438 |
container_start_page | 477 |
container_title | Journal of the American Statistical Association |
container_volume | 92 |
creator | Carroll, R. J. Fan, Jianqing Gijbels, Irène Wand, M. P. |
description | The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α
T
0
X + β
T
0
Z by η
0
(α
T
0
X) + β
T
0
Z, where η
0
(·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β
0
= 0. Using local linear methods, we propose estimates of the unknown parameters (α
0
, β
0
) and the unknown function η
0
(·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology. |
doi_str_mv | 10.1080/01621459.1997.10474001 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_274823451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2965697</jstor_id><sourcerecordid>2965697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</originalsourceid><addsrcrecordid>eNqF0F1LwzAUBuAgCs7pX5Ch4l1nvpNeDtE5mCio4F1I01Q6smYmHTp_vSnbZAhibgLhOS8nLwCnCA4RlPAKIo4RZfkQ5blIT1RQCNEe6CFGRIYFfd0HvQ5lnToERzHOYDpCyh6AY9vYoF39ZcvBow5trZ1bDaZ1Y3UYPNXNm7PZpCnt5-Del9bFY3BQaRftyebug5fbm-fru2z6MJ5cj6aZoYS3meQIGlhBaqjMqYFcW1wJUQhTSoKRpDSnJSmsZNIigSuIGMslqgppcFkQTvrgcp27CP59aWOr5nU01jndWL-MikjGIZcdPPsFZ34ZmrSbSn-XmFCGEjr_C6HUFyEkwaT4WpngYwy2UotQz3VYKQRV17Xadq26rtW26zR4sYnX0WhXBd2YOv5MY4kwZztsFlsfdsMxgULhnDOei8RGa1Y3lQ9z_eGDK1WrV86HbTT5Z6NvWd2aOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274823451</pqid></control><display><type>article</type><title>Generalized Partially Linear Single-Index Models</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Access via Taylor & Francis</source><creator>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</creator><creatorcontrib>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</creatorcontrib><description>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α
T
0
X + β
T
0
Z by η
0
(α
T
0
X) + β
T
0
Z, where η
0
(·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β
0
= 0. Using local linear methods, we propose estimates of the unknown parameters (α
0
, β
0
) and the unknown function η
0
(·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1997.10474001</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Asymptotic theory ; Estimation methods ; Estimation theory ; Estimators ; Exact sciences and technology ; Generalized linear models ; Kernel regression ; Linear inference, regression ; Linear models ; Linear regression ; Local estimation ; Local polynomial regression ; Logistics ; Mathematical models ; Mathematics ; Modeling ; Nonparametric inference ; Nonparametric models ; Nonparametric regression ; Parametric models ; Probability and statistics ; Quasi-likelihood ; Regression analysis ; Sciences and techniques of general use ; Statistical methods ; Statistics ; Theory and Methods ; Wands</subject><ispartof>Journal of the American Statistical Association, 1997-06, Vol.92 (438), p.477-489</ispartof><rights>Copyright Taylor & Francis Group, LLC 1997</rights><rights>Copyright 1997 American Statistical Association</rights><rights>1997 INIST-CNRS</rights><rights>Copyright American Statistical Association Jun 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</citedby><cites>FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2965697$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2965697$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27869,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2812651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carroll, R. J.</creatorcontrib><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Gijbels, Irène</creatorcontrib><creatorcontrib>Wand, M. P.</creatorcontrib><title>Generalized Partially Linear Single-Index Models</title><title>Journal of the American Statistical Association</title><description>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α
T
0
X + β
T
0
Z by η
0
(α
T
0
X) + β
T
0
Z, where η
0
(·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β
0
= 0. Using local linear methods, we propose estimates of the unknown parameters (α
0
, β
0
) and the unknown function η
0
(·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</description><subject>Asymptotic theory</subject><subject>Estimation methods</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Generalized linear models</subject><subject>Kernel regression</subject><subject>Linear inference, regression</subject><subject>Linear models</subject><subject>Linear regression</subject><subject>Local estimation</subject><subject>Local polynomial regression</subject><subject>Logistics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Nonparametric inference</subject><subject>Nonparametric models</subject><subject>Nonparametric regression</subject><subject>Parametric models</subject><subject>Probability and statistics</subject><subject>Quasi-likelihood</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Theory and Methods</subject><subject>Wands</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0F1LwzAUBuAgCs7pX5Ch4l1nvpNeDtE5mCio4F1I01Q6smYmHTp_vSnbZAhibgLhOS8nLwCnCA4RlPAKIo4RZfkQ5blIT1RQCNEe6CFGRIYFfd0HvQ5lnToERzHOYDpCyh6AY9vYoF39ZcvBow5trZ1bDaZ1Y3UYPNXNm7PZpCnt5-Del9bFY3BQaRftyebug5fbm-fru2z6MJ5cj6aZoYS3meQIGlhBaqjMqYFcW1wJUQhTSoKRpDSnJSmsZNIigSuIGMslqgppcFkQTvrgcp27CP59aWOr5nU01jndWL-MikjGIZcdPPsFZ34ZmrSbSn-XmFCGEjr_C6HUFyEkwaT4WpngYwy2UotQz3VYKQRV17Xadq26rtW26zR4sYnX0WhXBd2YOv5MY4kwZztsFlsfdsMxgULhnDOei8RGa1Y3lQ9z_eGDK1WrV86HbTT5Z6NvWd2aOg</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>Carroll, R. J.</creator><creator>Fan, Jianqing</creator><creator>Gijbels, Irène</creator><creator>Wand, M. P.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><general>Taylor & Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19970601</creationdate><title>Generalized Partially Linear Single-Index Models</title><author>Carroll, R. J. ; Fan, Jianqing ; Gijbels, Irène ; Wand, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-8610c0f04c4894c06ae2f77b7cd832184494d3be858e172f0155981fb8c2db363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Asymptotic theory</topic><topic>Estimation methods</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Generalized linear models</topic><topic>Kernel regression</topic><topic>Linear inference, regression</topic><topic>Linear models</topic><topic>Linear regression</topic><topic>Local estimation</topic><topic>Local polynomial regression</topic><topic>Logistics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Nonparametric inference</topic><topic>Nonparametric models</topic><topic>Nonparametric regression</topic><topic>Parametric models</topic><topic>Probability and statistics</topic><topic>Quasi-likelihood</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Theory and Methods</topic><topic>Wands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carroll, R. J.</creatorcontrib><creatorcontrib>Fan, Jianqing</creatorcontrib><creatorcontrib>Gijbels, Irène</creatorcontrib><creatorcontrib>Wand, M. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carroll, R. J.</au><au>Fan, Jianqing</au><au>Gijbels, Irène</au><au>Wand, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Partially Linear Single-Index Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1997-06-01</date><risdate>1997</risdate><volume>92</volume><issue>438</issue><spage>477</spage><epage>489</epage><pages>477-489</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α
T
0
X + β
T
0
Z by η
0
(α
T
0
X) + β
T
0
Z, where η
0
(·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β
0
= 0. Using local linear methods, we propose estimates of the unknown parameters (α
0
, β
0
) and the unknown function η
0
(·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01621459.1997.10474001</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 1997-06, Vol.92 (438), p.477-489 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_proquest_journals_274823451 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Access via Taylor & Francis |
subjects | Asymptotic theory Estimation methods Estimation theory Estimators Exact sciences and technology Generalized linear models Kernel regression Linear inference, regression Linear models Linear regression Local estimation Local polynomial regression Logistics Mathematical models Mathematics Modeling Nonparametric inference Nonparametric models Nonparametric regression Parametric models Probability and statistics Quasi-likelihood Regression analysis Sciences and techniques of general use Statistical methods Statistics Theory and Methods Wands |
title | Generalized Partially Linear Single-Index Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Partially%20Linear%20Single-Index%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Carroll,%20R.%20J.&rft.date=1997-06-01&rft.volume=92&rft.issue=438&rft.spage=477&rft.epage=489&rft.pages=477-489&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1997.10474001&rft_dat=%3Cjstor_proqu%3E2965697%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274823451&rft_id=info:pmid/&rft_jstor_id=2965697&rfr_iscdi=true |