Generalized Partially Linear Single-Index Models
The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α T 0 X + β T 0 Z by η 0 (α T 0 X) + β T 0...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1997-06, Vol.92 (438), p.477-489 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination α
T
0
X + β
T
0
Z by η
0
(α
T
0
X) + β
T
0
Z, where η
0
(·) is an unknown function. We call these generalized partially linear single-index models (GPLSIM). The models include the "single-index" models, which have β
0
= 0. Using local linear methods, we propose estimates of the unknown parameters (α
0
, β
0
) and the unknown function η
0
(·) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.1997.10474001 |